nbn Elektronik AG Birmensdorferstrasse 30 CH-8142 Uitikon Tel. +41 (0)44 404 34 34 Fax +41 (0)44 493 50 32 info@nbn-elektronik.ch www.nbn-elektronik.ch

		non Der Stellen Der Filter iner			300 🗸 🤶 🗌	588 🛪 🖺
	UrmsΣA	204.18 v				
	Irms _Σ A	528.65 ma	3		CONTRACTOR OF A	
	ΡΣΑ	29.93 w	4 Pres III bites Read		DISPLAY	MENT
	SEA	186.96 VA	6 Rowert Here Reet	00	DTESS (INT STATE)	
	QΣA	197.18 var	B Benerit bing hear	- 😨 🔽 🙊		
	λΣΑ	0.1601	9 6 100W 10 Special Integret			
	fU1	44.727 Hz	TODAY TODAY TODAY TODAY	ANTIGANA ING		
	71	83.852 %				-
0	Johnson 21 (Silleson)	attainer alle				

Broad Ranging Power Measurements with One Unit

Basic Power Accuracy DC Power Accuracy Voltage/Current Bandwidth 5 MHz*1 (-3 dB, Typical) **Sampling Rate Input Elements Current Measurement Fast data Capturing**

±0.1% ±0.05% 2 MS/s (16-bit) Max. 6 100 µ A to 55 A 5 ms Response *Max.1ms (When External Sync ON)

Innovative Functions Help Improve Measurement Efficiency

Motor, Inverter, Lighting, EV/HEV, Battery, Power Supply, Aircraft, New Energy, Power Conditioner

For more information, please visit. tmi.yokogawa.com Test & Measurement Instruments

*1: Excluding direct current input with the 50 A input element Bulletin WT1800-00EN

New WT1800 Precision Power Analyzer Offers High-performance, Wide-range, and 6 Power Inputs

New Functions Greatly Help Improve Measurement Efficiency

Support for Energy Conservation Technologies and Sustainable Energy Development

Dual Harmonic Measurement First in industry

The perspective of the efficient use of energy is boosting demand for inverters to convert 50 Hz or 60 Hz AC power to DC power, grid connection controllers to control reverse power flow occurring due to excess power, and battery chargers/dischargers.

The WT1800 is capable of simultaneous measuring the harmonic distortion of the input and output current of these devices Challenging the common wisdom that harmonic measurement is limited to a single line," the WT1800 is capable of performing two-line simultaneous harmonic measurements. The WT1800 is also capable of measuring up to the 500th order harmonic even at high fundamental frequencies such as a 400 Hz frequency. For details, see Pages 5 and 6)

Many features are available that are a first in the power measurement industry *

Rear panel

Blue: Sta

First in industry

NEW

NEW

First in industry

The photograph shows the model with the /MTR option

Manyfeatures are available that are a first in the power measurement industry?

Measurem	Ent High-precision, wide-range, fast-sampling, simultaneous harmonic measurement
5-fold wider than previous model	• Voltage and current frequency bandwidth 5 MHz (-3 dB, typical) Faster switching frequencies increasingly require measurements in a wider range. The WT1800 provides a voltage and current frequency bandwidth (5 MHz) 5-fold wider than the previous measurement range and is capable of more correctly capturing fast switching signals.
2/3 of previous model	• Reduction of low power-factor error to 0.1% of apparent power (2/3 of previous model) A power-factor error is one of the important elements to ensure high-accuracy measurements even at a low power factor. The WT1800 has achieved a power-factor error (0.1%) that is 2/3 of the previous model, in addition to a high basic power accuracy of ±0.1%.
Inheritance	• Wide voltage and current range allowing direct input Direct input of measurement signals makes it possible to measure very small current that can hardly be measured with a current sensor. The WT1800 provides a direct input voltage range from 1.5 V to 1000 V (12 ranges) and a direct input current range from 10 mA to 5 A (9 ranges) or from 1 A to 50 A (6 ranges).
5-fold wider than revious model	• 0.1 Hz low-speed signal power measurement and max. 50 ms high-speed data collection The frequency lower limit has been reduced to 0.1 Hz from the previous 0.5 Hz (5-fold lower than the previous model) to meet the requirement for power measurements at a low speed. Furthermore, high-speed data collection at a data update rate of up to 50 ms has been inherited. In addition to normal measurement data, up to the 500th order harmonic data can be measured and saved simultaneously. The data update rate can be selected from nine options from 50 ms to 20 s. * Harmonic measurement at the 50 ms data update rate is possible up to the 100th order.
First in industry	• Particular voltage and current range selectable Wide voltage and current input ranges have the advantage of extending the measurement application range. However, the downside is that the response time of the auto range tends to slow down. A range configuration function solves this problem. Since only the selected range (effective measurement range) can be used, the range can be changed up or down more quickly. For details, see Pages 5
NEW	• msec response for transient phenomena analysis (/HS option) The /HS option provides fast data capturing with ms response. Current WT series can measure three phase values like voltage, current and power every 50ms period correctly, however, 50ms data update rate is not enough for analyzing transient phenomena of motors and other devices recently. For details, see Pages 11

Functions New functions greatly support power measurements

- Dual harmonic measurement (option) The industry's first two-line simultaneous harmonic measurement is available, in addition to simultaneous measurement of harmonic and normal measurement items such as voltage, current, and power values. Previously, harmonic measurements of input and output signals had to be performed separately. With the WT1800, harmonic measurements of input and output can be performed simultaneously.
- Two-channel external signal input is available for power measurement and analog signal data measurement (option available in combination with the motor evaluation function) Power measurements can be performed together with physical quantity data such as solar irradiance or wind power in wind generation
- Electrical angle measurement is also supported. Motor evaluation function allowing A-phase, B-phase, and Z-phase inputs (option available in combination with external signal input) Pulse or analog signals can be input for rotation speed and torgue signal measurements. The motor evaluation function of the WT1800 makes it possible to detect the rotation direction and measure the electrical angle, which is not possible with Yokogawa's previous model

Saving/Communication

 User-defined event function For the first time in the high-precision power analyzer industry, an event trigger function is available to meet the requirement to capture only a particular event. For example, a trigger can be set for measured values that fall out of the power value range from 99 W to 101 W and only data that meets the trigger condition can be stored, printed, or saved to a USB memory device.

GP-IB, Ethernet, and USB communication functions available as standard

List of Available Functions 1-50A 10mA-5A 1MHz 1.5-1000V Standard feature ○ Option USB memory ○ Software (sold separately **€**

* Comparison with Yokogawa's previous model WT1600

*1: Applicable to a general-purpose high-precision three-phase power analyzer as of February 2011 (according to Yokogawa's survey)

First in industry

Customize Display Screen

With Yokogawa's previous power analyzer model, you have to select numerical formats such as 4-value, 8-value, and 16-value view to display screens, so you cannot flexibly display a screen to view the desired parameter in the desired size and at the desired position.

The WT1800 has broken the mold and is capable of reading user-created image

files (BMP) as display screens to allow viewing data in a flexible format. Thus the display screen can be customized in a more user-friendly and easy-to-read

			100 X2**C	Lane Filter Hotel Filter	Ten Blog		10 . 12
Elen Volt	age rms	Cur	rent ms	Pow	ior		4 fuel
	99.88		0.5472		28.58		
nean	100.40	mean	0.2393		28.58	1	
\$6 romn	0.14 90.39	de r-ma	0,0002	Var PE	-0.04 1.0000		
	99,88		0.5472		D0.08		
nas nin	139.69	max min	1.8958	mes	216.89	•	
	1,399		3,465				
Votes	n frequency	Carr	Int frequency				
- 4	9.951		9.656 K				
				Wh+			
		Ah-		Wh-			

For details, see Pages 5

A wide variety of communication and data saving functions

r details, see ages **4** and **8**

First in industry means functions and capabilities available for the first time in the high-precision three-phase powe

Functions/Displays

All Data of 6-input, Single/Three-phase Devices can be Viewed on a Single Screen Important Information is Displayed in a Concentrated Format on High Resolution 8.4-inch XGA Display

A high resolution display with a resolution about 2.6-fold higher than Yokogawa's previous model^{*} is employed. More setting information and measurement data can be displayed.

Voltage Current Urns (V) Inns (A) P (V) S (VA)	Element I 100V 1A 100.27 0.5517 28.90 28.90	Element2 150W 1A 132.93 0.5314 30.65	Element 3 150V 1A 134.10 0.5388	Element 4 150V 1A 134.10	∑A(3¥3A)	Element5	Element6	∑B(3P3₩)	PAGE	Element 1 📖
Urms (¥) Trms (A) P (¥) S (¥A)	100.27 0.5517 28.90 28.90	132.93 0.5314 30.65	134.10	134.10	Trail Inc.	TOOTIN	100mA		1	U1 100V
FINE [A] P [N] S [YA]	0.5517 28.90 28.90	0.5314	0.5388		133.71	100.35	100.36	100.35		Sync: II Integ:Stop
P [W] S [VA]	28.90 28.90	30.65	the rest of the local division in which the local division is not the local division in the local din the loca	0.5314	0.5339	11.21n	11.33n	11.27n	Z	5 A(3V3A)
S [VA]	28.90		-7.09	37.59	23.56	0.245	-0.245	-0.000	3	100 4500
		40.50	39.47	39.57	69.41	0.694	0.692	0.003	Ř	U2 150V
Q [var]	-0.16	26.47	38.82	-12.37	65.29	-0.650	0.647	-0.003	4	Sync: 12 Integ:Stop
λ []	1.0000	0.7569	-0.1798	0.9499	0.3394	0.3524	-0.3542	-0.1554		
¢ [°]	D0.31	G40.81	G100.36	D18.21	70.16	069.36	G110.74	98.94	ວ	
tU [liz]	50.000	19.607	19.606	19.607		50.002	50.002	Constant of the local division of the local	6	Sync: 12 Integ:Stop
fl [Hz]	19.904k	19.606	19.605	19.605		37.529k	38.129k		Ľ	
									7	U4 150V
Ums [¥ 1	100.27	132.93	134.10	134.10	133.71	100.35	100.36	100.35	K	Sync: 12 Integ: Stop
Unn [¥]	100.79	76.11	75.90	75.91	75.98	100.85	100.86	100.86	8	ZB(3D3M) m
Ulda [¥]	0.01	-0.05	0.00	0.05	0.04	-0.03	0.03	0.03	Q	20(01 011)
Urmn [¥]	90.74	68.52	68.34	68.35	68.40	90.80	90.81	90.80	2	U5 100V
Ulac [Y]	100.27	132.93	134.10	134.10	133.71	100.35	100.36	100.35	10	Sync: III Integ: Stop
U+pk[∀]	139.98	284.53	275.41	274.73		141.08	141.20		H	100 4000
U-pk [V]	-140.36	-284.27	-274.94	-273.78		-141.27	-141.24		11	U6 100V
CfU []	1.400	2.140	2.054	2.049		1.408	1.407		10	Sync: E Integ: Stop
Pc [N]	29.05	15.14	-3.44	18.25	11.69	0.246	-0.246	-0.000	3	Motor
P+pk [₩]	238.14	-0.49	-1.12	25.20		12.000	0.040		•	Spd 20V
P-pk [V]	-2.39	-2.18	-104.70	-54.14		-2.781	-1.652			Irq 20V
			-	C CONTRACTOR						

Line filter

A lot of information can be displayed on a single screen

Measurement data can be displayed on a single screen, along with the respective detailed setting information of 6 inputs, such as a voltage range, current range, synchronization source, wiring system, and filter. You do not need to switch display screens frequently to confirm the settings.

Data update rate changeable

With the WT1800, the data update rate can be selected from 9 options from the fastest data update rate of 50 ms to an update rate of 20 s for low-speed measurements. For example, if you want to save the average data at a 1-minute interval and inappropriately set the update rate of 50 ms, measurement results may be not correct because data can be saved only at a 1-minute interval (once every 20 times).

Such a risk can be avoided by setting the update rate that is suited to the interval at which you want to save data.

Computation range display

Direct display of primary current values

The setting ranges of voltage and current are usually displayed with voltage and current signal levels that are input to the power analyzer. The WT1800 provides not only this direct display but also added a new computation range display function to the external current sensor range. This function allows you to display the primary current range for the voltage output type current sensor. It allows you to intuitively set a range that is suited to the primary measurement signal

Innovative function

Innovative function

Individual null function

Function to reset only a particular input signal to zero

level.

A null function allows you to reset the offset value to zero in the connected state. Previously all inputs could only be collectively set to ON or OFF With the WT1800, the null value for each input can be set to ON. HOLD. or OFF In a motor evaluation test, the offset value for only a particular input can be reset to zero. This makes it possible to perform a more accurate motor evaluation test

User-defined event function Capture only a particular event

The data saving function of the WT Series is capable of continuously saving data for a long period of time. However, to check an irregular event, data must be retrieved using spreadsheet software The event trigger function allows you to set the high and low limits and after trigger data that falls into or out of that range to be saved.

Help function

Display the manual on the screen

Display the manual on the screen Frequently used functions (keys) can be performed without the instruction manual. You may, however, want to use a new function during evaluation. The WT1800 includes a built-in instruction manual on the functions, so if a new operation is required, you can read the explanation of the function on the screen. You can switch it to another language menu of Chinese, German and Japanese.

English help menu supports measurement

100.35 133.37 100.20 121.36 100.20 121.36 100.20 121.36 100.20 121.36 11 100.20 12 136 12 136 12 136 12 136 12 136 12 136 12 136 13 136 13 13607 14 19.608 13 100.20 13 13607 14 13608 13 13607	100.12 · 100
Range configration function High-speed range	setting su
A new range configuration function is available. It allows you to select a particular voltage and current input range (effective measurement range). Eliminating unnecessary ranges has made it possible to achieve optimal range setting that is faster than Yokogawa's previous model*. This allows more quicker tracking of signal changes. If the peak goes over the limit, you can switch to a preset range. This is effective in reducing the production time for a repeat test, such as setting to OFF, 100 V, OFF and so on, which is performed frequently on the production line.	And the second s
A Wide Variety of Display Forn	1ats R
Numerical and harmonic bar graphs	Wav
A harmonic measurement option (/G5) makes in possible to display both numerical data and bar graphs to help understand measurement data visually. In addition, a dual harmonic measurement function (/G6) makes it possible to measure and display two-line harmonic bar graphs (dual harmonic) simultaneously.	
Dual vector	Trei
Simultaneous two vector displays	
Fundamental harmonic voltage and current signal phase vectors can be displayed. With Yokogawa's previous model, vector display is limited to a single line. With the WT1800, Dual vectors can be displayed. In addition, combination display of vectors and naddition, combination display of vectors and voltage and current phase status visually. The /65 or /66 option is required	
Setting information NEW	Cus
Combination display of Information and Numerical screens	
The screen can be split into two, with one above the other, and two types of screens can be displayed simultaneously. Screen can be selected from Numerical, Waveform, Trend, Bar Graph, and Vector displays. Another new function allows you to press the NFO button on the Numerical screen to display the setting information in the upper row and automatically scale down the numerical information displayed in the lower row.	Element I Voltage maximum energy of the second energy of the second energy of the second energy of the second energy of the second descendence of the second energy of the second descendence of the second energy of the second descendence of the second d

Functions/Displays

NEW

NEW

Capture an original signal masked by high frequency component

In power evaluation such as an inverter waveform and distorted waveform, measurement values are affected by high frequency component. A new digital filter function makes it possible to remove unnecessary high frequency components superimposed on signals. A filter can be independently set for each input element. An analog filter for 1 MHz/300 kHz, and digital filter that can be set from 100 Hz to 100 kHz in increments of 100 Hz are available as standard.

ited to input signals

Ranging from Numerical to Custom Display

veform

Support for 6 split screen displays

A high resolution display makes is possible to split the waveform display into up to 6 split screens. This makes it possible to split the display of signals between the input and output of a three-phase inverter and display them simultaneously.

Waveform display allows you to display waveforms for the voltage alone or the current alone, or arbitrarily set the display position, so you can also display only the signals you want to compare one above the other

Capture efficiency changes visually

When evaluating inverter efficiency, sometimes small efficiency changes can hardly be recognized with just numerical values. Trend display makes it possible to display measurement values and measurement efficiency as trend data in time series to help capture even small changes visually. Trend data over several minutes or several days can be displayed.

Trend display can be saved with the screen hardcopy function nerical data, a store function is used.

NEW

tom

Customize display screen

mage data can be loaded onto the screen and the position and size of the numerical data can be specified.

The display screen can be customized so that the corporate logo of your company is displayed on the screen, or only the measurement items you want to view, such as input and output efficiency or frequency, are displayed one above the other.

The data for the created screen needs to be loaded from a USB storage device

Applications

Keyword

Input/Output Efficiency Measurements of Inverters, Matrix Converters, Motors, Fans, and Pumps

In addition, a motor evaluation function (option) makes it possible to simultaneously monitor voltage, current, and power changes, as well as rotation speed and torque changes.

Advantages of WT1800

5 MHz range and 2 MS/s high-speed sampling

The vertical resolution in power measurements is one of the important elements for high-precision measurements

The WT1800 is capable of 16-bit high resolution and approximately 2 MHz sampling to make it possible to measure faster signals with higher precision.

Boost converter efficiency and inverter efficiency evaluation

To evaluate the inputs and outputs of inverters including boost converters at least 5 power measurement inputs are required. The WT1800 provides 6 inputs to make it possible to evaluate all aspects of inverters. In addition, a new individual null function makes it possible to set the DC offset only on a particular input channel as the null value. This makes it possible to perform more accurate measurements.

Ginnut	Nernal Male Peak Day Tasking Live Filter Revenues Aug	100 M 1
o-mput	- Timb	
Efficiency	μ μ τη	* vienki
measurement	S III III	
		Annes Antonio
	A DAME - THE - THE - THE - THE	<u>11 h</u>
DestBuffing]	MATE IN THE COMPLEX COMPLEX	d Martin
Inuiviuuai	™ ne 1 49.954 21.590 21.604 21.591	
null function	0 Be 1 49.953 21.668 21.642 21.633	
	· · · · · · · · · · · · · · · · · · ·	

Up to the 500th order harmonic measurement (/G5 and /G6 options)

Yokogawa's previous model* provides two different measurement modes, called Normal and Harmonic, and each of the measurements is performed separately. The WT1800 makes it possible to simultaneously measure voltage, current fundamental wave, harmonic components, and harmonic distortion factor (THD) in the Harmonic measurement mode, along with the conventional voltage and current RMS values in the Normal measurement mode. You do not need to switch modes and can measure all data at high speed. In addition up to the 500th order harmonic can be measured for fundamental frequencies.

arison with Vokonawa's previous model WT1600

Dual harmonic measurement (/G6 option)

In previous models, harmonic measurement has been limited to a single line. The WT1800 is capable of performing two-line simultaneous harmonic measurements with one unit for the first time in the industry.

The ability to simultaneously measure harmonics for the input and output signals not only reduces the switching time but also makes it possible to perform simultaneous data analysis for the input and output, which has not been possible with the previous models.

> The following measurements can be performed for up to the 500th orde

Delta computation function (/DT option)

Delta-star

version

It is possible to obtain the differential voltage, line voltage, phase voltage, etc. by obtaining the sums and differences of instantaneous measurement values of voltage and current in each element.

 Differential voltage/current: Differential voltage and current between two elements are computed in the three-phase three-wire system

•Line voltage/phase current: Line voltage and phase current that are not measured are computed in the three-phase three-wire system (Figure 1).

 Star-delta conversion: Line voltage is computed from the phase voltage using the three-phase four-wire system data. Delta-star conversion: Phase voltage is computed from the line

voltage in the three-phase three-wire system (3V3A system) (Figure 2).

Typical Product Configuration *For detailed specifications, see the page on the specifications. You need to provide a cable for voltage measurements when wiring Direct input measurements at less than 50 A: WT1806-06-D-HE/B5/G6/DT/V1/MTR 6 power inputs, current measurement range 10 mA to 55 A, built-in printer, dual harmonic, delta computation, RGB output, motor evaluation function Measurements at more than 50 A using a current sensor: WT1806-60-D-HE/B5/G6/DT/V1/MTR

Advantages of WT1800

Standby and operation power measurements of up to six devices with a single unit

Power measurements of up to six devices can be performed with a single unit. In standby power measurement, 1 mA or less measurement is supported since measurements can be performed from an effective input of 1% of the small current range in the rated 10 mA range Also, an average active power function allows you to calculate the mean power* by intermittent oscillation control signals.

*For detailed specifications, see the page on the specifications. You need to provide a cable for voltage measurements when wiring WT1806-06-M-HE/EX6/B5/G6/FQ/V1/DA: 6 power inputs, current measurement range 10 mA to 55 A, or clamp measurement (with a clamp input terminal), built-in printer, all-channel frequency measurement (×12), RGB output, dual harmonic, DA output *An external input terminal (EX) allows you to perform both direct input measurement and clamp m

Applications

Electrical angle/rotation direction measurements of motors (/G5 and /G6 options) (/MTR option)

A motor evaluation function makes it possible to measure the rotation speed, torque, and output (mechanical power) of motors from rotation sensor and torque meter signals. The input signal from the rotation sensor and torque meter can be selected from analog signal or pulse signal.

Furthermore, A-phase, B-phase, and Z-phase input terminals have been newly added. The A-phase and B-phase make it possible to detect the rotation direction of motors. In addition electrical angle* can be measured using Z-phase signals.

Electrical angle measurements require the /G5 or /G6 option. Please purchase a torque sensor and rotation sensor separately. Pulse/analog inputs are available for the motor evaluation function of the WT1800.

DL850 ScopeCorder

*1: Detailed switching waveforms of inverters cannot be viewed with the WT1800. If you need to verify the waveforms, you can use the DL850 ScopeCorder, which is capable of 100 MS/s, 12-bit isolated input. For details, please see Yokogawa's website or catalog (Bulletin DL850-00EN).

6 power inputs, current measurement range 100 µA to 5.5 A (measure AC/DC current sensor output), built-in printer, dual harmonic, delta computation, RGB output, motor evaluation function

The /G5 or /G6 option is required for the harmonic distortion factor measurement. Also, the /FQ option is required to measure four or more freque

Combined use with ScopeCorder for analog output (/DA option)

A D/A output connector on the rear panel allows you to convert a measurement value to ± 5 V (rated value), 16-bit high resolution DC voltage value and output it. Up to 20 items can be output simultaneously

Also, the ability to set the upper and lower limits for an arbitrary range of input signals and scale up and down the D/A output in the range from -5 V to +5 V allows you to enlarge a changing part of the input signals to monitor it with a ScopeCorder, etc. * 0 to 5 V is fixed for some items, such as frequency measurement

Applications

Keyword

Power Generation and Conversion Efficiency Measurements in New Energy Markets, including Photovoltaic and Wind Power Generation

Energy generated by photovoltaic cell modules and wind turbines is converted from DC to AC by a power conditioner. Furthermore, the voltage is converted by a charge control unit for the storage battery. Minimizing losses in these conversions improves efficiency in the overall energy system. The WT1800 is capable of providing up to 6 channels of power inputs per unit to make it possible to measure the voltage, current, power, and frequency (for AC) before and after each converter, as well as converter efficiency and charging efficiency.

Advantages of WT1800

Max. 1000 V/50 A × 6-line direct measurement

Overview

Direct input terminals in a voltage range from 1.5 V to 1000 V and current range from 10 mA to 5 A or 1 A to 50 A make it possible to perform high-precision measurements without using a current sensor

Furthermore, power conditioner evaluation requires multiple-channel power measurements, such as inputs/outputs from a boost converter, inverter, and storage battery. The WT1800 is capable of providing up to 6 channels of power inputs to make it possible to simultaneously perform power measurements at multiple points with one unit. In addition, two units can be operated in synchronization for multi-channel power evaluation

Maximum Power Peak Tracking (MPPT) measurement

measured

In photovoltaic power generation, an MPPT control is performed to effectively utilize voltage generated by photovoltaic cells in an attempt to maximize the harvested power. The WT1800 is capable of measuring not only the voltage, current, and power but also the voltage, current, and power peak values (plus (+) and minus (-) sides, respectively). Also, the maximum power peak value (plus (+) and minus (-) sides) can be

Typical voltage, current, and power measurements in MPPT control

Namel Hole	Peak Deer	Scales Att	Line Filterin Triset Rent	
Urant	97.52	UrmsSA	80.58 -	Federal 1
Inst	0.3166 .	ImsXA	0.5288 *	3 14040A) 225
P1	28.39		21.66	4 5 000
P+pk1	79.16	Pipik2	72.25	6 5HK STER
P-pk1	20.73	Pipk3	33.94 🛛	8 Deniet 5 cm
λ1	0.9196	Pipk4	34.02 .	10 Denote 5 cm
\$1	G23.13 -			11 US 100V 1 DiseA See: Solid
101	50.003 🗤	-	21.612 ĸ	Gird 20V Irg 20V

user-defined function A user-defined function makes it possible to compute not only the conversion efficiency but

also the power loss, DC voltage and DC current ripple factors between the input and output. This is helpful in multiplying a factor or slightly changing the arithmetic expression according to the purpose. Up to 20 arithmetic expressions can be set. Display names for the arithmetic operations F1, F2, and so on can be changed freely.

Ripple factor and power loss measurements using

[(Voltage peak value (+) - Voltage peak value (-))/2 × DC voltage value (mean)] × 100 2. Power loss = Output power - Input power

Typical Product Configuration "For detailed specifications, see the page on the specifications. You need to provide a cable for voltage measurements when wiring Direct input measurements at less than 50 A: WT1806-06-F-HE/EX6/B5/G6/AUX

6 power inputs, current measurement range 10 mA to 55 A, or clamp measurement (with clamp input terminals), built-in printer, dual harmonic, auxiliary input Measurement at more than 50 A using a current sensor: WT1806-60-F-HE/EX6/B5/G6/AUX 6 power inputs, current measurement, built-in printer, dual harmonic, external signal input

* Lamp current can be obtained either by measuring the output of a wide range current sensor as shown in the figure, or by obtaining the differential current using computation (delta computation function).

Overview

Advantages of WT1800 • An external input terminal (EX) allows you to perform both direct input measurement and clamp measurement.

using a current sensor, or by using the delta computation of the WT1800 (/DT option). Note: Tube current is obtained by the computation of a difference in the

ous values instead of the effective current values

Tube current measurements of fluorescent lamps Light emitting efficiency and power measurements (/DT option) of LED lights (/AUX option)

A ballast uses harmonic frequency signals to illuminate the fluorescent lamp. The frequency is generally as fast as tens of kHz. A wide range capability of power measurement is important to reliably capture the signals. Also, since tube current cannot be measured directly, it is obtained either by measuring the difference between the output current of the ballast and the cathode current

5 MHz range

Typical Product Configuration

*For detailed specifications, see the page on the specifications. You need to provide a cable for voltage measurements when wiring. WT1806-06-H-HE/EX6/G6/DT/DA: 6 power inputs, current input range 10 mA to 55 A, or clamp measurement (with a clamp input terminal), dual harmonic, delta computation (differential current measurement), DA output *Direct input and current sensor input cannot b

Power integration (power sold and bought/charge and discharge) measurements

A power integration function makes it possible to measure the amount of power sold/bought in grid interconnection and of battery charge/discharge. The WT1800 provides a current integration (q), apparent power integration (WS), reactive power integration (WQ), as well as effective power integration capable of integration in the power sold/bought and charge/discharge modes

Furthermore, a user-defined function makes it possible to calculate the Average active power within the integration period. This makes it possible to more accurately measure the power consumption of an intermittent oscillation control unit in which power fluctuates greatly.

Trigger when an error occurs (User-defined event function)

An event trigger function is helpful in verifying that voltage or current changes are within the design tolerance range. Setting the normal power generation range as a judgment condition (trigger) detects measurement data that falls out of that range and save it to the memory.

Typical measurement of power value (P1), plus (+) side (P+pk) and minus (-) side (P-pk) of max. power peak value

Applications

Harmonic distortion factor (THD) measurement (/G5 and /G6 options)

Voltage fluctuations and harmonic flow into the power system due to reverse power flow. A harmonic measurement function makes it possible to compute and display the harmonic distortion factor (THD) by measuring harmonic components.

Immediately print out screens (/B5 option)

Multiple engineers may want to verify detailed data during a test. A built-in printer makes it possible to print data immediately on the spot and for multiple engineers to verify the data simultaneously

Since the switching frequency of fluorescent lamp is sometimes as fast as approximately tens of kHz, a wide range power measurement is required. Also, sometimes dimming control by a PWM modulation circuit is performed for the LED lights. The WT1800 provides a wide range from DC to up to 5 MHz to allow you to evaluate these kinds of harmonic signals.

It is important for LED lights to increase the light emitting efficiency while at the same time reducing the current and power consumption. The WT1800 allows you to measure voltage, current, and power, as well as compute the light emitting efficiency (lamp efficiency) by connecting the output of an illuminance meter, etc. to the external signal input terminal (/AUX option).

DC/AG	And Audital Television Control of the Second	1
efficiency	100.64 *** 4.9077 ************************************	

Applications

Keyword

Input/Output Efficiency Measurements of Inverter Motors for Hybrid Electric Vehicles (HEV), Electric Vehicles (EV), and Plug-in Hybrid Electric Vehicles (PHEV)

The WT1800's ability to perform up to 6 power input measurements makes it possible to evaluate the battery's charge and discharge characteristics, and test and evaluate the efficiency between the input and output of inverters. A motor evaluation function (/MTR option) makes it possible to simultaneously monitor changes in the voltage, current, and power, as well as changes in the rotation speed and torque.

Advantages of WT1800

Overview

Inverter, motor, and DC/DC converter efficiency measurements

A single WT1800 unit is capable of measuring the effective power, frequency, and motor output in order to measure the total efficiency, including inverter and motor efficiency and battery DC/DC conversion efficiency

DC power accuracy has been improved to $\pm 0.05\%$ to ensure more accurate measurements.

Offset correction measurement by null function

you may find a value will not become zero due to the influence of the ambient environment or other reasons and the offset value will be applied inappropriately even before starting measurements.

After you finish connecting the wires for inverter motor testing,

With the previous power analyzer model*, there is no choice other than to turn all inputs on and off collectively, so unintended offset adjustment is performed even for inputs for which you do not want adjust. With the WT1800, only an input for which you want to perform

offset adjustment can be turned on and off. *Comparison with Yokogawa's previous model WT1600

Typical Product Configuration *For detailed specifications, see the page on the specifications. You need to provide a cable for voltage measurements when wiring

WT1805-50-H-HE/B5/G6/DT/DA/MTR: 5 power inputs, current input range 100 µA to 5.5 A (measuring AC/DC current sensor output), built-in printer, dual harmonic, delta computation, DA output, motor evaluation function

Harmonic measurements from a 0.5 Hz low frequency (/G5 and /G6 options)

In motor testing, evaluation is performed at various rotation speeds from low to high speeds. The WT1800 supports the lower limit frequency of 0.5 Hz to make it possible to measure harmonics at a very low motor rotation speed without using an external sampling clock.

Battery charge and discharge measurements

In integrated measurement, the battery charge and discharge can be evaluated. Instantaneous positive and negative values captured at an approximately 2 MS/s high-speed sampling rate are integrated, respectively, and each of the total values is displayed

Charge current amount Ah (power amount Wh) and discharge current amount Ah (power amount Wh) can be integrated, respectively

DA output and remote control (/DA option)

Sometimes you may want to check changes in data, along with other measurement data (temperature, etc) at the same time when you acquire communication data, such as voltage, current, power, and efficiency data. A DA output function allows you to retrieve analog signals on up to 20 channels. Also, remote control signals make it possible to control the start, stop, and reset of integration by external analog signals. Furthermore, integration can be linked by inputting an analog trigger signal from another device.

Data analysis and graph drawing by data calculation software

Inverter charge efficiency ID1P1/ID1P Σ A×100[%], Motor efficiency ID1Pm/ID1P Σ A×100[%]

ble number of units FTP server function GP-IB connection 1 to 4 units Ethernetcommunication 1 to 4 units USB communication 1 to 4 units

Memory media (USB storage device) is required

Comparison between WT1600 and WT1800

Comparison with the previous model (main changes)

	WT1800	WT1600	
Voltage input terminal	Plug-in terminal (safety terminal)	Plug-in terminal (safety terminal)	
Current input terminal	Large binding post	Large binding post	
External sensor input terminal	Insulated BNC connector (option)	Insulated BNC connector (standard)	
Basic voltage/current accuracy	+/-0.1%	+/-0.1%	
Basic power accuracy	+/-0.05%	+/-0.1%	
Frequency range	DC, 0.1Hz to 1 MHz	DC, 0.5 Hz to 1 MHz	
Voltage/Current frequency range (-3 dB, typical)	5 MHz (-3 dB, typical)	No definition	
Sampling speed	approximately 2 MS/s	approximately 200 kS/s	
Wiring setting method	Selects wiring and element numbers	Selects wiring system pattern	
Selects specified range	Yes	N/A	
Effective input range	1% to 110% of range rating	1% to 110% of range rating	
Screen size and resolution	8.4-inch (1024×768)	6.4-inch (640×480)	
Data update rate	50 m, 100 m, 200 m, 500 m, 1, 2, 5, 10, 20 [sec]	50 m, 100 m, 200 m, 500 m, 1, 2, 5 [sec]	
Line filter	OFF, digital filter 100 Hz to 100 kHz (100 Hz step) analog filter 300 kHz, 1 MHz	0FF, 500 Hz, 5.5 kHz, 50 kHz	
Frequency filter	OFF, 100 Hz or 1 kHz	OFF or ON	
Harmonic measurement	/G5 option or /G6 option	Standard	
Harmonic mode	Simultaneous normal and harmonic measurement	Selects normal or harmonic mode	
Fundamental fragments of the DLL sources	0.5 Hz to 2600 Hz (internal sampling clock)	1 to 10 Hz (use external sampling clock)	
Fundamental frequency of the PLL source	(without external sampling clock function)	10 Hz to 440 Hz (internal sampling clock)	
Upper limit of the measured order	Up to 500 order	Up to 100 order	
Harmonic analysis number	select from 1 system (/G5 option) or 2 systems (/G6 option)	1 system	
Integration	Active power, current, apparent power, reactive power	Active power, current	
Integration mode	Charge/discharge, sold/bought mode	Charge/discharge mode	
Delta computation function	/DT option	Standard	
Auto printing function	Yes	N/A	
Screen print-out function	Built-in printer	Built-in printer, Ethernet network printer	
Printer width/length	80 mm / 10 m	80 mm / 10 m	
Crest factor (CF=peak/minimum rms)	300	300	
Average (moving average)	Sets between from 2 to 64 counts	Selects from 8, 16, 32 or 64 counts	
Store function	Store	Store / Recall	
Store items	Numeric	Numeric, waveform (1002 peak to peak data)	
Screen shot image format	BMP, PNG and JPEG	TIFF, BMP, Post Script, PNG and JPEG	
Frequency measurements	3 sources (standard), 12 sources (/FQ option)	3 sources (standard)	
Rotation speed input	A-phase, B-phase, Z-phase input (/MTR option)	1 input (/MTR option)	
Universal analog inputs	Two analog inputs (/AUX option)	N/A	
SCSI interface	N/A	Yes (/C7)	
Internal HDD	N/A	Yes (10 GB, /C10)	
DA output channels numbers	20 ch (/DA option)	30 ch (/DA option)	
DA output resolution	16 bits	12 bits	
Data memory	Direct save to USB device up to 1 GB (file size)	approximately 11 MB (internal), FDD, HDD	
Communication command compatibility	Approximately 90% command compatibility		
GP-IB communication	Standard	Standard (select GP-IB or RS-232)	
Ethernet communication	Standard (No HDD and No SCSI)	Option (with HDD and SCSI option)	* There are restrictions on some specifications and functions.
Ethernet communication protocol	VXI11	Yokogawa original protocol	For details, refer to the specifications.
USB communication	USB-TMC	N/A	* A table comparing commands between the two models will
RS232 communication	N/A	Standard (select GP-IB or RS-232)	published on the Products page of the Yokogawa website.

Characteristics comparison

Examples of frequency characteristics of the WT series and the PZ4000

Examples of frequency and power accuracy characteristics

Influence of the common-mode voltage on the readings

Total power error with rated range input for an arbitrary power factor (at 50/60 Hz)

Example of the frequency and power accuracy for zero power factor

Comparison of Power Analyzer WT Series and PZ

Comparison of the specifications and functions of the WT series and the PZ4000

	- WT1900	W/T2000	W/TE00		D74000
	W11800	W13000	W1500	W1210/W1230	PZ4000
Basic power accuracy (50/60 Hz)	0.1% of reading +0.05% of range	0.02% of reading +0.04% of range	0.1% of reading +0.1% of range	0.1% of reading +0.1% of range	0.1% of reading +0.025% of range
DC power accuracy	0.05% of reading +0.1% of range	0.05% of reading +0.1% of range	0.1% of reading +0.1% of range	0.3% of reading +0.2% of range	0.2% of reading +0.1% of range
Power frequency range	DC, 0.1 Hz to 1 MHz	DC, 0.1 Hz to 1 MHz	DC, 0.5 Hz to 100 kHz	DC, 0.5 Hz to 100 kHz	DC, 0.1 Hz to 1 MHz
Voltage/Current frequency range	5 MHz (typical)	1 MHz	100 kHz	100 kHz	5 MHz (typical)
Input elements	1, 2, 3, 4, 5, 6	1, 2, 3, 4	1, 2, 3	1 (WT210), 2 or 3 (WT230)	1, 2, 3, 4, or 1, 2, 3 +Motor module
Voltage range	1.5, 3, 6, 10, 15, 30, 60, 100, 150, 300, 600, 1000 [V]	15, 30, 60, 100, 150, 300, 600, 1000 [V]	15, 30, 60, 100, 150, 300, 600, 1000 [V]	15, 30, 60, 100, 150, 300, 600 [V]	30, 60, 120, 200, 300, 600, 1200, 2000 [Vpk]
Current range (direct input)	10 m, 20 m, 50 m, 100 m, 200 m, 500 m, 1, 2, 5 [A] or, 1, 2, 5, 10, 20, 50 [A]	5 m, 10 m, 20 m, 50 m, 0.1, 0.2, 0.5, 1, 2 [A] or, 0.5, 1, 2, 5, 10, 20, 30 [A]	500 m, 1, 2, 5, 10, 20, 40 [A]	5 m, 10 m, 20 m, 50 m, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20 [A] (WT210) 0.5, 1, 2, 5, 10, 20 [A] (WT230)	5 A module: 0.1, 0.2, 0.4, 1, 2, 4, 10 [Apk] (5 A rms) 20 A module: 0.1, 0.2, 0.4, 1, 2, 4, 10 [Apk] (5 A rms) 1, 2, 4, 10, 20, 40, 100 [Apk] (20 A rms)
Current range (external sensor input)	50 m, 100 m, 250 m, 500 m, 1, 2.5, 5, 10 [V] (opt.)	50 m, 100 m, 200 m, 500 m, 1, 2, 5, 10 [V]	50 m, 100 m, 200 m, 500 m, 1, 2, 5, 10 [V] (opt.)	50 m, 100 m, 200 m [V] or 2.5, 5, 10 [V] (opt.)	0.1, 0.2, 0.4, 1 [Vpk]
Guaranteed accuracy range for voltage and current	1% to 110%	1% to 130%	1% to 110%	1% to 130%	5% to 70% (peak range)
Main measurement parameters	Voltage, current, active power, reactive power, apparent power, power factor, phase angle, frequency, peak voltage, peak current, crest factor, integration (Wh, Ah, varh, Vah)	Voltage, current, active power, reactive power, apparent power, power factor, phase angle, frequency, peak voltage, peak current, crest factor, integration (Wh, Ah, varh, Vah)	Voltage, current, active power, reactive power, apparent power, power factor, phase angle, frequency, peak voltage, peak current, crest factor, integration (Wh, Ah, varh, Vah)	Voltage, current, active power, reactive power, apparent power, power factor, phase angle, frequency, peak voltage, peak current, crest factor, integration (Wh, Ah)	Voltage, current, active power, reactive power, apparent power, power factor, phase angle, frequency, peak voltage, peak current, crest factor
Crest factor	Maximum 300	Maximum 300	Maximum 300	Maximum 300	Maximum 20
MAX hold	Yes	Yes	Yes	Yes	No
Voltage RMS/MEAN simultaneous measurement	Yes	Yes	Yes	No	Yes
Average active power	Yes (user defined unction)	Yes (user defined unction)	Yes (user defined unction)	Yes	No
Active power integration (WP) (Wh)	Yes	Yes	Yes	Yes	No
Apparent power integration (WS) (VAh)	Yes	Yes	Yes	No	No
Reactive power integration (WQ) (varh)	Yes	Yes	Yes	No	No
Frequency measurement	3 ch (up to 12 channels with option /FQ)	2 ch (up to 8 channels with option /FQ)	2 ch (up to 6 channels with option /FQ)	1 ch	2 ch / module
Efficiency measurement	Yes	Yes	Yes	Yes (WT230)	Yes
Motor evaluation	Torque, A / B / Z phase signal inputs (/MTR), 6 inputs, and motor evaluation (opt.)	Torque, rotating speed input (/MTR), 4 inputs, and motor evaluation (opt.)	No	No	Torque and rotational velocity input (requires sensor input module 253771) (opt.)
Auxiliary inputs	Yes (2 inputs) (opt.)	No	No	No	No
FFT spectral analysis	No	Yes (/G6) (opt.)	No	No	Yes
User-defined functions	Yes (20 functions)	Yes (20 functions)	Yes (8 functions)	No	Yes (4 functions)
Display	8.4-inch XGA TFT color LCD	8.4-inch VGA TFT color LCD	5.7-inch VGA TFT color LCD	7-seament display	6.4-inch VGA TFT color LCD
	Yes (numeric, waveform, trend)	Yes (numeric, waveform, trend)	Yes (numeric, waveform, trend)		Yes (numeric, waveform, trend, X-Y,
Display format	/G5 (opt.) or /G6 (opt.) (bar graph, vector)	/G6 (opt.) (bar graph, vector)	/G5 (opt.) (bar graph, vector)	numeric (3 values)	bar graph, vector)
Sampling frequency	Approximately 2 MS/s	Approximately 200 kS/s	Approximately 100 kS/s	Approximately 50 kS/s	Maximum 5 MS/s
Harmonic measurement	(/G5) (opt.)	(/G6) (opt.)	(/G5) (opt.)	(/HRM) (opt.)	Yes
Dual harmonic measurement	(/G6) (opt.)	No	No	No	No
IEC standards-compliant harmonic measurement	No	(/G6) (opt.) (10 cycle / 50 Hz, 12 cycle / 60 Hz, 16 cycles (50 and 60 Hz)	No	No	No
IEC flicker measurement	No	(/FL) (opt.)	No	No	No
Cycle by cycle measurement	No	(/CC) (opt.)	No	No	No
Delta calculation function	(/DT) (opt.)	(/DT) (opt.)	(/DT) (opt.)	No	Yes
DA outputs	20 channels (/DA) (opt.)	20 channels (/DA) (opt.)	No	4 channels (/DA4) (opt.) (WT210) 12 channels (/DA12) (opt.) (WT230)	No
Storage (internal memory for storing data)	Approximately 32 MB	Approximately 30 MB	Approximately 20 MB	Maximum 600 samples (WT210) Maximum 300 samples (WT230) * Only reading in the WT is possible.	None, but acquisition memory has 100 kW/channel (up to 4 MW/channel can be installed with /M3 option)
Interfaces	GP-IB, USB, Ethernet RGB output (V1) (opt.)	GP-IB, RS-232 (/C2) (opt.) USB (/C12) (opt.), VGA output (/V1) (opt.) Ethernet (/C7) (opt.)	USB, GP-IB (/C1) (opt.) Ethernet (/C7) (opt.) VGA output (/V1) (opt.)	GP-IB or RS-232 (WT210) (opt.) GP-IB or RS-232 (WT230)	GP-IB, RS-232, Centronics, SCSI (/C7) (opt.)
Synchronous measurement	Yes	Yes	Yes	No	Yes
Data update interval	50 m, 100 m, 200 m, 500 m, 1, 2, 5, 10, 20 [S]	50 m, 100 m, 250 m, 500 m, 1, 2, 5, 10, 20 [S]	100 m, 200 m, 500 m, 1, 2, 5 [S]	100 m, 250 m, 500 m, 1, 2, 5 [S]	Depends on waveform acquisition length and calculations
Removable storage	USB	PC card interface, USB (/C5) (opt.)	USB	No	FDD
Built-in printer	front side (/B5) (opt.)	front side (/B5) (opt.)	No	No	top side (/B5) (opt.)

There are limitations on some specifications and functions. See the individual product catalogs for details.

Comparison of the accuracy and range between the WT series and PZ

Comparisons

(opt.) : Optional

Explanations

SUPPORTS Crest Factor 6

The crest factor is the ratio of the waveform peak value and the RMS value.

Crest factor (CF, peak factor) = <u>waveform peak</u> RMS value

When checking the measurable crest factor of our power measuring instruments, please refer to the following equation.

Crest factor (CF) = {measuring range×CF setting (3 or 6)} measured value (RMS)

* However, the peak value of the measured signal must be less than or equal to the continuous maximum allowed input

* The crest factor on a power meter is specified by how many times peak input value is allowed relative to rated input value. Even if some measured signals exist whose crest factors are larger than the specifications of the instrument (the crest factor standard at the rated input), you can measure signals having crest factors larger than the specifications by setting a measurement range that is large relative to the measured signal. For example, even if you set CF = 3, CF 5 or higher measurements are possible as long as the measured value (RMS) is 60% or less than the measuring range. Also, for a setting of CF = 3, measurements of CF = 300 are possible with the minimum effective input (1% of measuring range).

Calculation Method of Voltage and Current and Procedure to Set Synchronous Source

AC signals are repeatedly changing waveforms in terms of instantaneous values. An averaging calculation by the repeated periods is required to be performed to measure the power value of the AC signals. The WT1800 uses an ASSP method to perform averaging processing by the periods for the instantaneous data measured at an approximately 2 MS/s rate to obtain the measurement value.

ASSP Method

An ASSP (Average for the Synchronous Source Period) method is used to calculate the measurement value by performing calculation processing for the sampling data within the data update period (with the exception of the integrated power value WP and integrated current value q in the DC mode). This method uses a frequency measurement circuit to detect the period of the input signal set in the synchronous source and performs calculation using the sampling data in the interval equivalent to the integral multiple of the input period. Since the ASSP method basically is able to obtain the measurement value by just performing an averaging calculation for the interval of one period, it is effective for a short data update period or efficient measurement of low frequency signals. If this method cannot detect the period of the set synchronous source signal correctly, the measurement values will not be correct. Therefore, it is necessary to check to make sure the frequency of the synchronous source signal and fisplayed correctly. For the notes of the settings of the synchronous source signal and frequency filter, refer to the instruction manual.

Setting Synchronous Source

In the case of such a signal, the synchronous source is set to the current signal side with less harmonic components. Even if harmonic components (noise) are superimposed on the current waveforms, measurements can be stabilized by turning on the frequency filter to detect a zero crossing reliably.

When the frequency measurement results are correct and stable, you can consider the filter settings are right. A frequency filter also functions as a filter to detect a zero crossing of the synchronous source. That's why a frequency filter is also called a synchronous source filter or a zero crossing filter.

Selecting formulas for calculating apparent power and reactive power

There are several types of power—active power, reactive power, and apparent power. Generally, the following equations are satisfied: Active power P = UlcosØ (1) Reactive power Q = UlsinØ (2) Apparent power S = Ul (3) In addition, these power values are related to each other as follows: (Apparent power S)² = (Active power P)² + (Reactive power Q)² (4)

- U: Voltage RMS
- I : Current RMS
- Ø: Phase between current and voltage
- Three-phase power is the sum of the power values in the individual phases

These defining equations are only valid for sinewaves. In recent years, there has been an increase in measurements of distorted waveforms, and users are measuring sinewave signals less frequently. Distorted waveform measurements provide different measurement values for apparent power and reactive power depending on which of the above defining equations is selected. In addition, because there is no defining equation for power in a distorted wave, it is not necessarily clear which equation is correct. Therefore, three different formulas for calculating apparent power and reactive power for three-phase four-wire connection are provided with the WT1800.

• TYPE1 (method used in normal mode with older WT Series models)

With this method, the apparent power for each phase is calculated from equation (3), and reactive power for each phase is calculated from equation (4). Next, the results are added to calculate the power. Active power: $P\Sigma=P1+P2+P3$

*S1, S2, and S3 are calculated with a positive sign for the leading phase and a negative sign for the lagging phase.

• TYPE2

The apparent power for each phase is calculated from equation (3), and the results are added together to calculate the three-phase apparent power (same as in TYPE1). Three-phase reactive power is calculated from three-phase apparent power and three-phase active power using equation (4). Active power: $P\Sigma$ =P1+P2+P3 Apparent power: $S\Sigma$ =S1+S2+S3(=U1×I1+U2×I2+U3×I3)

Reactive power: $Q\Sigma = \sqrt{S\Sigma^2 - P\Sigma^2}$

• TYPE3 (method used in harmonic measurement mode with WT1600 and PZ4000)

This is the only method in which the reactive power for each phase is directly calculated using equation (2). Three-phase apparent power is calculated from equation (4). Active power: $P\Sigma = P1 + P2 + P3$ Apparent power: $S\Sigma = \sqrt{P\Sigma^2 + Q\Sigma^2}$ Reactive power: $Q\Sigma = Q1 + Q2 + Q3$

Inputs	
Item	Specification Voltage
input terminar type	Plug-in terminal (safety terminal)
	Current
	Direct input: Large binding post
Innut type	External current sensor input: insulated BNC connector Voltage
input type	Floating input, resistive potential method
	Current
	Floating input, shunt input method
Measurement range	Voltage 1.5.V. 2.V. 6.V. 10.V. 15.V. 20.V. 60.V. 100.V. 150.V. 200.V. 600.V. 1000.V./for creat factor 2)
	0.75 V. 1.5 V. 3 V. 5 V. 7.5 V. 15 V. 30 V. 50 V. 75 V. 150 V. 300 V. 500 V. 1000 V (101 clest factor 6)
	Current
	Direct input:
	50 A Input element
	500 mA, 1 A, 2.5 A, 5 A, 10 A, 25 A (for crest factor 6)
	5 A input element
	10 mA, 20 mA, 50 mA, 100 mA, 200 mA, 500 mA, 1 A, 2 A, 5A (for crest factor 3)
	• External current sensor input:
	50 mV, 100 mV, 200 mV, 500 mV, 1 V, 2 V, 5 V, 10 V (for crest factor 3)
In star and In so	25 mV, 50 mV, 100 mV, 250 mV, 500 mV, 1 V, 2.5 V, 5 V (for crest factor 6)
Instrument loss	Voltage
	Input capacitance : Approx. 10 pF
	Current
	 Direct input: 50 A input element: Approximately 2 m + approximately 0.07 uH
	5 A input element: Approximately 100 m + approximately 0.07 µH
Instantaneous maxim	External current sensor input: Approximately 1 M mailowable input (20 ms or less)
Instantaneous maxim	Voltage
	Peak voltage of 4 kV or RMS of 2 kV, whichever is lower
	Current
	 Direct input (50 A input element): Peak current of 450 A or RMS of 300 A, whichever is lower
	 Direct input (5 A input element): Peak current of 30 A or RMS of 15 A,
	Whichever is lower External current sensor input: Peak current is less than 10 times the range
Instantaneous maxim	um allowable input (1 second or less)
	Voltage
	Peak voltage of 3 kV or RMS of 1.5 kV, whichever is lower
	Direct input (50 A input element): Peak current of 150 A or BMS of 55 A.
	whichever is lower
	 Direct input (5 A input element): Peak current of 10 A or RMS of 7 A, whichever is lower
	External current sensor input: Peak current is less than 10 times the range
Continuous maximum	allowable input
	Peak voltage of 2 kV or BMS of 1.1 kV, whichever is lower
	If the frequency of the input voltage exceeds 100 kHz, (1200-f) Vrms or less
	The letter f indicates the frequency of the input voltage and the unit is kHz.
	Direct input (50 A input element): Peak current of 150 A or BMS of 55 A.
	whichever is lower
	 Direct input (5 A input element): Peak current of 10 A or KMS of 7 A, whichever is lower
	External current sensor input: Peak current is less than 5 times the range
Continuous maximum	common mode voltage (50/60 Hz)
Influence from comm	
	Apply 1000 Vrms for input terminal and case with the voltage input terminals shorted,
	the current input terminals open, and the external current sensor input terminals
	 50/60 Hz: +0.01% of range or less
	Reference value up to 100 kHz: ±{(maximum rated range) / (rated range) × 0.001
	x t% of range} or less. For external current sensor input, add max. rated range / rated range x {0.0125 x log (f x 1000)-0.0213% of range. However. 0.01% or
	more. The unit of f is kHz.
Line filter	I ne maximum rated range within the equation is 1000 V or 50 A or 5 A or 10 V.
Frequency filter	Select OFF, 100 Hz to 100 KHz (in increments of 100 Hz), 300 KHz, of 1 MHz
A/D converter	Simultaneous voltage and current input conversion
	Resolution: 16-bit
	Approximately 500 ns. See harmonic measurement items for harmonic measurement.
Range switching	A range can be set for each input element
Auto range functions	Kange up
	 When the measured values of orms and irms exceed 110% of the range When the peak value of the input signal exceeds approximately 330% of the range
	(or approximately 660% for crest factor 6)
	Range down
	When the measured values of U RMS and I RMS fall to 30% or less of the range
	When the measured values of U RMS and I RMS fall to 105% or less of the lower
	 range (range to which the range setting switches down) When the measured values of Upk and lok fall to 300% or less of the lower range
	(600% or less for crest factor 6)

Display

nom	opeeneddon
Display	8.4-inch color TFT LCD display
Total number of pixels*	1024 (horizontal) × 768 (vertical) dots
Display update rate	Same as the data update rate.
	1) The display update interval of numeric display alone is 200 ms to 500 ms
	(which varies depending on the number of display items) when the data update rate is 50 ms, 100 ms, and 200 ms.
	2) The display update interval of display items other than numeric display
	(including custom displays) is approximately 1 second when the data update rate is 50 ms, 200 ms, and 500 ms.
*Up to approximately 0	.002% of the pixels on the LCD may be defective.

[V/ Re [va Co Int Int W Int W Int P

Display Items

alculation Fund	JUOIIS					
Measurement Fun	ction	Single-phase 3-wire	3-phase 3-wire	3-phase 3-wire (3-voltage 3-current measurement)	3-phase 4-wire	
ltage U Σ [V]		(U1+U2)/2	(U1+U2+U3)/3			
rrent I Σ [A]		(I1+I2)/2	(11+12+13)/3			
tive power P 5 [W]		P1+P2			P1+P2+P3	
parent Power S Σ A]	TYPE1 TYPE2	S1-S2	√3/2 (S1+S2)	√3/3 (S1+S2+S3)	S1+S2+S3	
	TYPE3	$\sqrt{P \Sigma^2 + Q \Sigma^2}$				
active Power Q Σ	TYPE1	Q1+Q2 Q1+Q2+Q3				
arj	TYPE2	$\sqrt{S \Sigma^2 - P \Sigma^2}$				
	TYPE3	Q1+Q2	Q1+Q2+Q3			
prrected Power Pc S	[W]	Pc1+Pc2			Pc1+Pc2+Pc3	
tegrated Power WP	[Wh]	WP1+WP2			WP1+WP2+WP3	
tegrated Power (Pos	itive)	When WPTYPE	is set to CHARGE/	DISCHARGE		
P+Σ[Wh]		WP+1+WP+2			WP+1+WP+2+WP+3	
		When WPTYPE is set to SOLD/BOUGHT Whenever data is updated, only the positive value of active power WP Σ is added				
tegrated Power (Neg	jative)	When WPTYPE is set to CHARGE/DISCHARGE				
P-Σ[Wh]		WP-1+WP-2 WP-3			WP-1+WP-2+WP-3	
		When WPTYPE is set to SOLD/BOUGHT Whenever data is updated, only the negative value of active power WPΣ is added				
tegrated Current q Σ	[Ah]	q1+q2			q1+q2+q3	
tegrated Current (Po -[Ah]	sitive)	q+1+q+2			q+1+q+2+q+3	
tegrated Current (Ne Σ [Ah]	egative)	q-1+q-2			q-1+q-2+q-3	
tegrated reactive Po QΣ [varh]	wer	$\frac{1}{N} \sum_{n=1}^{N} I Q\Sigma(n) I \times Time$				
		$Q \Sigma$ (n) indicates the Σ function of the nth reactive power, N indicates the number of data updates, and the unit of Time is h				
tegrated apparent Power ΣΣ [VAh]		$\left \frac{1}{N} \sum_{n=1}^{N} S\Sigma(n) \times Time \right $				
		S Σ (n) indicates the Σ function of the nth apparent power, N indicates the number of data updates, and the unit of Time is h				
wer Factor S		ΡΣ/SΣ				
ase angle Ø Σ [°]		COS-1 (Ρ Σ /S Σ)				
ote 1) The instrument's appare		ent power (S), reactive power (Q), power factor (λ), and phase difference (\emptyset)				

(e) If the instantiants apparent is apparent by the (1), reactive power (a), power factor (v), and phase uniference (b) are calculated using measured values of voltage, current, and active power. (However, reactive power is calculated directly from sampled data when TYPE3 is selected.) Therefore, when distorted waveforms are input, these values may be different from those of other measuring instruments based on different measuring principals.

Instruments based on different measuring principals. Note 2) The value of Q for each phase in the Q for calculated input, and a plus sign when it lags the voltage input, so the value of Q Σ may be negative.

Numerical Display

Measurement functions obtained for each input element Item Symbol and Meaning

Voltage (V)	Urms: True RMS value, Umn: Rectified mean value calibrated to the RMS value, Udc: Simple mean value. Urmn: Rectified mean value. Uac: AC component				
Current (A)	Urms: True RMS value, Imn: Rectified mean value calibrated to the RMS value, Idc: Simple mean value, Irmn: Rectified mean value, Iac: AC component				
Active power (W)	P				
Apparent power (VA)	S				
Reactive power (var)	Q				
Power factor	λ				
Phase angle (°)	Ø				
Frequency (Hz)	fU (FreqU): Voltage frequency, fl (FreqU): Current frequency Three fU and fl of all elements included can be measured simultaneously. A frequency measurement option allows you to simultaneously measure all fU and flof all elements. Unselected signals are displayed with "" indicating no data.				
Maximum and minimu	im voltage values (V)				
	U+pk: Maximum voltage value, U-pk: Minimum voltage value				
Maximum and minimu	m current values (A)				
	I+pk: Maximum current value, I-pk: Minimum current value				
Maximum and minimu	im power values (W)				
	P+pk: Maximum power value, P-pk: Minimum power value				
Crest factor	CfU: Voltage crest factor, CfI: Current crest factor				
Corrected power (W)	Pc Applicable standards IEC76-1 (1976), IEC76-1 (1993)				
Integration	Time: Integration time WP: Sum of the amount of both positive and negative power WP+: Sum of positive P (amount of power consumed) WP-: Sum of negative P (amount of power returned to the grid) q: Sum of the amount of both positive and negative current q+: Sum of negative I (amount of current) q: Sum of negative I (amount of current) WS: Amount of apparent power WQ: Amount of reactive power However, the amount of current is integrated by selecting any one of Irms,Imn,Idc,Iac,				

Specifications

Measurement function (Σ function) obtained for each connected unit ($\Sigma A, \Sigma B, \Sigma C$)

Item	Symbol and Meaning
Voltage (V)	$\label{eq:umssignable} \begin{array}{l} \text{Urms} \underline{\Sigma} : \text{True} \text{RMS} \text{value}, \text{Ums} \underline{\Sigma} : \text{Rectified mean value calibrated to the RMS value, Udc} \\ \underline{\Sigma} : \text{Simple mean value}, \text{Urmn} : \text{Rectified mean value}, \text{Uac} \underline{\Sigma} : \text{AC component} \end{array}$
Current (A)	Irms Σ : True RMS value, Imn Σ : Rectified mean value calibrated to the RMS value, Idc Σ : Simple mean value, Irmn Σ : Rectified mean value, Iac Σ : AC component
Active power (W)	ΡΣ
Apparent power (VA)	SΣ
Reactive power (var)	QΣ
Power factor	λΣ
Corrected power (W)	Pc Σ Applicable standards IEC76-1 (1976), IEC76-1 (1993)
Integration	Time Σ : Integration time WP Σ : Sum of the amount of both positive and negative power WP+ Σ : Sum of positive P (amount of power consumed) WP- Σ : Sum of negative P (amount of power returned to the grid) q Σ : Sum of the amount of both positive and negative current

- $\begin{array}{l} q \geq z & \text{sourd of negative I (amount of current)} \\ q + \Sigma & \text{sourd of negative I (amount of current)} \\ ws \Sigma & \text{integration of S} \Sigma \\ wq \Sigma & \text{integration of Q} \Sigma \end{array}$

Harmonic Measurement (Option)

Measurement functi	ion obtained for each input element
Item	Symbol and Meaning
Voltage (V)	U (k): RMS value of the harmonic voltage of order k \ast_1 , U: Voltage RMS value (Total value \ast_2)
Current (A)	I (k): RMS value of the harmonic current of order k, I: Current RMS value (Total value)
Active power (W)	P (k): Active power of the harmonic of order k, P: Active power (Total value)
Apparent power (VA)	S (k): Apparent power of the harmonic of order k, S: Total apparent power (Total value)
Reactive power (var)	Q (k): Reactive power of the harmonic of order k, Q: Total reactive power (Total value)
Power factor	λ (k): Power factor of the harmonic of order k, λ : Total power factor (Total value)
Phase angle (°)	 Ø (k): Phase angle between the harmonic voltage and current of order k, Ø: Total phase angle Ø U (k): Phase angle of each harmonic voltage U (k) relative to the fundamental wave U (1) Ø I (k): Phase angle of each harmonic current I (k) relative to the fundamental wave I (1)
Impedance of the load	
	Z (k): Impedance of the load circuit for the harmonic of order k
Resistance and reacta	ance of the load circuit ()
	 Rs (k): Resistance of the load circuit to the harmonic of order k when the resistance R, the inductance L, and the capacitor C are connected in series Sk (k): Reactance of the load circuit to the harmonic of order k when the resistance R, the inductance L, and the capacitor C are connected in series Rp (k): Resistance of the load circuit to the harmonic of order k when the resistance R, the inductance L, and the capacitor C are connected in parallel Xp (k): Reactance of the load circuit to the harmonic of order k when the resistance R, the inductance L, and the capacitor C are connected in parallel Xp (k): Reactance of the load circuit to the harmonic of order k when the resistance R, the inductance L, and the capacitor C are connected in parallel
Harmonic content [%]	Uhdf (k): Ratio of the harmonic voltage U (k) to U (1) or U Ihdf (k): Ratio of the harmonic voltage U (k) to U (1) or U Ihdf (k): Ratio of the atronoic voltage U (k) to U (1) or U
Total harmonic distort	tion [%] Uthd: Ratio of the total harmonic " voltage to U (1) or U Ithd: Ratio of the total harmonic current to I (1) or I Pthd: Ratio of the total harmonic active power to P (1) or P
Telephone harmonic f	actor
	Uthf: Voltage telephone harmonic factor, Ithf: Current telephone harmonic factor Applicable standard: IEC34-1 (1996)
Telephone influence fa	actor
	Utif: Voltage telephone influence factor, Itif: Current telephone influence factor Applicable standard: IEEE Std 100 (1996)
Harmonic voltage fact	tor *4
	hvf: harmonic voltage factor
Harmonic current fact	tor ⁴
K-factor	hct: harmonic current factor Ratio of the sum of the squares of weighted harmonic components to the sum of the
*1: Order k is an integ DC current compo the 500th order de *2: The total value is a components (from can be added to tt *3: The total harmonin limit value for the *4: The equations may	squares of the orders of harmonic current ter in the range from 0 to the upper limit value for the measured order. The 0th order is a pending on the frequency of the PLL source. calculated by obtaining the fundamental wave (the 1st order) and all harmonic the 2nd order to the upper limit value for the measured order). Also, the DC component (dc) te equation. c is calculated by obtaining the total harmonic component (from the 2nd order to the upper measured order) y vary depending on the definitions in the standards, etc. Check the standards for details.
Measurement function and current between This is a measurement of the fundare to the connected unit.	ion indicating the phase difference of the fundamental wave between the voltage n input elements It function indicating the phase angle of the fundamental wave U (1) or I (1) of another nental wave U (1) of the element with the smallest number among input elements assigned The following table shows measurement functions for the connected unit with a

to the connected unit. combination of the ele	The following table shows measurement functions for the connected unit with a ments 1, 2, and 3.
Item	Symbol and Meaning
Phase angle U1-U2 (°)	ØU1-U2: Phase angle of the fundamental wave (U2 (1)) of the voltage of the element 2 to the fundamental wave (U1 (1)) of the voltage of the element 1
Phase angle U1-U3 (°)	ØU1-U3: Phase angle of the fundamental wave (U3 (1)) of the voltage of the element 3 to U1 (1)
Phase angle U1-I1 (°)	ØU1-I1: Phase angle of the fundamental wave (I1 (1)) of the current of the element 1 to U1 (1)
Phase angle U2-I2 (°)	ØU2-I2: Phase angle of the fundamental wave (I2 (1)) of the current of the element 2 to U2 (1)
Phase angle U3-I3 (°)	ØU3-I3: Phase angle of the fundamental wave (I3 (1)) of the current of the element 3 to U3 (1)
EaU1 to EaU6 (°), Eal1	to Eal6 (°)
	Phase angle Ø of the fundamental waves of U1 to I6 based on the rise of the Z terminal

Phase angle 6 of the fundamental waves of 0 to to based on the rise of the input in the motor evaluation function (option). N is the set value for the number of poles in the motor evaluation function.

Delta Calculation (Option) Item Volta

Item	Delta Calculation Setting	Symbol and Meaning
Voltage (V)	difference	Δ U1: Differential voltage between u1 and u2 determined by computation
	3P3W->3V3A	∆ U1: Line voltage that is not measured but can be computed for a three-phase, three-wire system
	DELTA->STAR	Δ U1, Δ U2, Δ U3: Phase voltage that can be computed by a three-phase, three-wire (3V3A) system Δ U Σ = (Δ U1 + Δ U2 + Δ U3)/3
	STAR->DELTA	Δ U1, Δ U2, Δ U3: Line voltage that can be computed for a three-phase, four-wire system Δ U $\Sigma = (\Delta$ U1 + Δ U2 + Δ U3)/3
Current (A)	difference	Δ I1: Differential current between i1 and i2 determined by computation
	3P3W->3V3A	Δ I: Phase current that is not measured
	DELTA->STAR	∆ I: Neutral line current
	STAR->DELTA	∆ I: Neutral line current
Power (W)	difference	
	3P3W->3V3A	
	DELTA->STAR	Δ U1, Δ U2, Δ U3: Phase power determined by computation for a three-phase, three-line (3V3A) system Δ P $\Sigma = \Delta$ P1 + Δ P2 + Δ P3
	STAR->DELTA	

Waveform/Trend Ite

	opconication
Waveform display	Displays the waveforms of the voltage and current from elements 1 through 6, torque, speed, AUX1, and AUX2.
Trend display	Displays trends in numerical data of the measurement functions in a sequential line graph. Number of measurement channels: Up to 16 parameters
Day Granh (Mast	
Bar Graph/vect	or (Option) Specification
Item	or (Option) Specification
Bar Graph/vect Item Bar graph display	or (Option) Specification Displays the size of each harmonic in a bar graph.

graph display	Displays the size of each harmonic in a bar graph.
tor display	Displays the vector of the phase difference in the fundamental waves of voltage and current.

Accur

Accuracy	ront	
Voltage and our	Specification	
Accuracy (six-month)	Conditions Temperature: $23\pm5^{\circ}$ C, Power factor (λ): 1, Con Frequency filter: 1 kHz o After zero level compen- the accuracy equation is	Humidity: 30 to 75% RH, Input waveform: Sine wave, mon mode voltage: 0 V, Crest factor: 3, Line filter: OFF r less when ON, after warm-up. sation or range value changed while wired. The unit of f within s kHz.
	Voltage	
	Frequency	Accuracy ±(Measurement reading error + Setting range error)
	DC	$\pm (0.05\% \text{ of reading} + 0.1\% \text{ of range})$
	0.1 Hz \leq f $<$ 10 Hz	$\pm (0.1\% \text{ of reading} + 0.2\% \text{ of range})$
	$10 \text{ Hz} \le f < 45 \text{ Hz}$	±(0.1% of reading + 0.1% of range)
	$45 \text{ Hz} \le f \le 66 \text{ Hz}$	$\pm (0.1\% \text{ of reading} + 0.05\% \text{ of range})$
	$66 \text{ Hz} < f \le 1 \text{ kHz}$	$\pm (0.1\% \text{ of reading} + 0.1\% \text{ of range})$
	$1 \text{ kHz} < f \le 50 \text{ kHz}$	$\pm (0.3\% \text{ of reading} + 0.1\% \text{ of range})$
	$50 \text{ kHz} < 1 \le 100 \text{ kHz}$	$\pm (0.6\% \text{ of reading} + 0.2\% \text{ of range})$
	100 KHZ < T ≤ 500 KHZ	$\pm \{(0.006 \times 1)\% \text{ of reading} + 0.5\% \text{ of range}\}$
	5UU KHZ < T ≤ T MHZ	±{(U.U22 × 1 - 8)% of reading + 1% of range}
	Frequency bandwidth	5 MHZ (-3 UB, typical)
	Current	
	Frequency	Accuracy ±(Measurement reading error + Setting range error)
	DC	±(0.05% of reading + 0.1% of range)
	$0.1 \text{ Hz} \le f < 10 \text{ Hz}$	±(0.1% of reading + 0.2% of range)
	$10 \text{ Hz} \le f < 45 \text{ Hz}$	±(0.1% of reading + 0.1% of range)
	$45 \text{ Hz} \le f \le 66 \text{ Hz}$	\pm (0.1% of reading + 0.05% of range)
	66 Hz < f ≤ 1 kHz	±(0.1% of reading + 0.1% of range) Direct input of the 50 A input element ±(0.2% of reading + 0.1% of range)
	$1 \text{ kHz} < f \le 50 \text{ kHz}$	\pm (0.3% of reading + 0.1% of range) 50 mV, 100 mV, 200 mV range of the external current sensor input \pm (0.5% of reading + 0.1% of range) Direct input of the 50 A input element \pm (0.1 + 1 + 0.2% of reading + 0.1% of range)
	50 kHz < f \leq 100 kHz	±(0.6% of reading + 0.2% of range) Direct input of the 50 A input element ±{(0.1 × f + 0.2)% of reading + 0.1% of range}
	100 kHz < f ≤ 200 kHz	$\begin{array}{l} \pm \{(0.00725 \times f - 0.125)\% \text{ of reading} + 0.5\% \text{ of range}\}\\ \text{Direct input of the 50 A input element}\\ \pm \{(0.05 \times f + 5)\% \text{ of reading} + 0.5\% \text{ of range}\} \end{array}$
	200 kHz < f ≤ 500 kHz	$\pm \{(0.00725 \times f - 0.125)\% \text{ of reading} + 0.5\% \text{ of range}\}$ Direct input of the 50A input element: It does not define accuracy.
	$500 \text{ kHz} < \overline{f} \le 1 \text{ MHz}$	±{(0.022 × f - 8)% of reading + 1% of range} Direct input of the 50A input element : It does not define

 accuracy.

 Frequency bandwidth
 5 MHz (-3 dB, typical) 5 A input element External current sensor input of the 50 A input element

Conditions	Same as the accuracy of the voltage and current
Frequency	Accuracy
DC	±(Reading error + Measurement range error)
01 Hz < f < 10 Hz	$\pm (0.05\% \text{ of reading} + 0.1\% \text{ of range})$
10 Hz < f < 45 Hz	$\pm (0.5\% \text{ of reading} \pm 0.2\% \text{ of range})$
45 Hz < f < 66 Hz	$\pm (0.1\% \text{ of reading} \pm 0.2\% \text{ of range})$
66 Hz < f < 1 kHz	$\pm (0.2\% \text{ of reading} + 0.1\% \text{ of range})$
$1 \text{ kHz} < f \le 50 \text{ kHz}$	$\pm (0.3\% \text{ of reading} + 0.2\% \text{ of range})$
	50 mV, 100 mV, 200 mV range of the external current sensor input
	$\pm (0.5\% \text{ of reading} + 0.2\% \text{ of range})$
	Direct input of the 50 A input element
50 klls of < 100 klls	$\pm \{(0.1 \times 1 + 0.2)\% \text{ of reading} + 0.2\% \text{ of range}\}$
50 KHZ < T≦ 100 KHZ	\pm (0.7% of reading + 0.3% of range) Direct input of the 50 A input element \pm {(0.3 × f - 9.5)% of reading + 0.3% of range}
100 kHz < f \leq 200 kHz	$\pm \{(0.0105 \times f - 0.25)\% \text{ of reading} + 1\% \text{ of range}\}$
	Direct input of the 50 A input element $\pm \{(0.09 \times f + 11)\% \text{ of reading} + 1\% \text{ of range}\}$
200 kHz < f ≤ 500 kHz	$\pm \{(0.0105 \times f - 0.25)\% \text{ of reading} + 1\% \text{ of range}\}$
	Direct input of the 50A input element: It does not define accuracy.
500 kHz < f \leq 1 MHz	\pm {(0.048 × f - 20)% of reading + 2% of range} Direct input of the 50A input element: It does not define accuracy.
alue to the above accuracy	y for the external current sensor range.
y: 50 μV · (50 μV/External current «	annor range rating) × 100% of range
alue to the above accuracy	y for the direct current input range.
acy: 1 mA cv: (1 mA/Direct current in	nout range rating) $\sim 100\%$ of range
by. (TITIA/ Direct current in	iput range rading) × 100 % of range
асу: 10 µA	(a)
cy: (10 µA/Direct current i	nput range rating) × 100% of range
due to the above accuracy	(reference value) The effective input range is within +300% o
% for crest factor 6)	
5 × √(15/range) + 0.5}% o	of range
ut range	
lent; $3 \times \sqrt{1/range}$ of	range + 10 mA
nt: {10 × V(10 m/range) +	+ 0.5}% of range
nV range: {10 x √(0 01/rar	nge) $+ 0.53\%$ of range
range: $\{10 \times \sqrt{(0.05)/rang}\}$	(e) + 0.5% of range
nperature change after ze	ro level compensation or range change
lue to the above accuracy	<i>I</i> .
acy; 0.02% of range/°C	
e direct current input	
ent: 10 µA/°C	
external current sensor in	put: 50 μV/°C
Influence from the voltag	e × Influence from the current
err-neating caused by volt	tage input
nue to the voltage and pov 0000001 x 112 % of roads	ing
$1.0000001 \times U^2$ % of read	H_{10}^{11} + 0.0000001 × U ² % of range
ading (V).	
the self-heating continues	until the temperature of the input resistor decreases, even if the
es to a small value.	rent input
alue to the current and nov	ver accuracy of the 50 A element
$.00006 \times I^2$ % of reading	to accuracy of the controlomont.
.00006 × I ² % of reading	$+ 0.004 \times I^2 \text{ mA}$
lue to the current and pov	ver accuracy of the 5 A element.
.UUb × I ² % of reading	0.004×12 % of reading
$1000 \times 1^{\circ} \% 01 reauling + 0$	0.004 × 1° % 01 (Baulity
the self-heating continues	until the temperature of the shunt resistor decreases. even if
anges to a small value.	
racy according to the data	a update rate
) when the data update rat	te is 50 ms and 0.05% of reading when 100 ms.
een 0.1 Hz and 10 Hz are r	voltage, and cultent
ds 750 V at 30 kHz to 100	kHz, the voltage and power values are reference values
ds 20 A at DC, 10 Hz to 45	Hz, or 400 Hz to 100 kHz, the current and power accuracies ar
actor 6: Same as the rand	e accuracy of crest factor 3 for twice the range
uo uo uo uo rung	
Specification	
	Conditions Frequency DC 0.1 Hz ≤ f < 10 Hz

Power Item

Specification

Influence of power factor (λ)				
	When $\lambda = 0$			
	Apparent power reading \times 0.1% for the range from 45 to 66 Hz For frequencies other than the above (Reference values)			
	5 A input element and external sensor inputs: Apparent power reading × (0.1 + 0.05 × f (kHz))% Direct input of the 50 A input element: Apparent power reading × (0.1 + 0.3 × f (kHz))%			
	When $0 < \lambda < 1$			
	Power reading $\times [(Power reading error %) + (Power range error %) \times (Power range/Apparent power reading) + {tan \emptyset \times (Influence \% when \lambda = 0)}]Ø is the phase angle between the voltage and current.$			
Influence of line filter	When the cutoff frequency (fc) is 100 Hz to 100 kHz			
	Voltage/current Up to (fc/2) Hz: Add 2 × [1 - $\sqrt{1/(1 + (f/fc)^4)} \times 100 + (20 \times f/300 \text{ k})\%$ of reading Power			
	Up to (fc/2) Hz: Add 4 × [1 - $\sqrt{1/(1 + (f/c)^4)}$ × 100 + (40 × f/300 k)% of reading When the cutoff frequency (fc) is 300 kHz and 1 MHz			
	Voltage/current			
	Up to (fc/10) Hz: Add (20 × f/fc)% of reading Power			
	Up to (fc/10) Hz: Add ($40 \times f/fc$)% of reading			
Lead/lag phase detection	(D (LEAD)/G (LAG) of the phase angle)			
	The phase lead and lag can be detected correctly when the voltage and current input signals are as follows. • Sine wave			
	50% or more of the measurement range (100% or more for crest factor 6) Frequency: 20 Hz to 10 kHz Phase angle: ±(5° to 175°)			
Symbol s for the reactive	power Q S calculation			
	The symbol s shows the lead/lag of each element, and "-" indicates leading.			
Temperature coefficient	±0.03% of reading/°C at 5 to 18°C or 28 to 40°C			

Specifications

S

Effective input range	Udc and ldc: 0 to $\pm 110\%$ of the measurement range Urms and Irms: 1 to 110% of the measurement range Umn and Imn: 10 to 110% of the measurement range			
	Urmn and Irmn: 10 to 110% of the measurement range			
	Power			
	DC measurement: 0 to ±110%			
	AC measurement: ±110% of the power range when the voltage range is 1 to 110%.	and curren	τ	
	However, the synchronization source level shall meet the input sign frequency measurement. Each of the lower limits is doubled for cre	al level of st factor 6.		
Max. display value	140% of the voltage and current range rating			
Min. display value	Displays the following values relative to the measurement range. • Urms, Uac, Irms, Iac: Up to 0.3% (up to 0.6% for crest factor 6) • Umn, Urm, Imn, Imn: Up to 2% (up to 4% for crest factor 6) Below that, zero suppress. Current integration value g also depends on the current value			
Measurement lower limi	it frequency			
	Data update rate: 50 ms 100 ms 200 ms 5	00 ms		
	Measurement lower limit frequency: 45 Hz 25 Hz 12.5 Hz	5 Hz		
	Data update rate: 1 s 2 s 5 s	10 s	20 s	
	Measurement lower limit frequency: 2.5 Hz 1.25 Hz 0.5 Hz	0.2 Hz ().1 Hz	
Accuracy of apparent po	ower S			
	Voltage accuracy + Current accuracy			
Accuracy of reactive pov	wer Q			
	Accuracy of apparent power + $(\sqrt{(1.0004 - \lambda^2)}) - \sqrt{(1 - \lambda^2)}) \times 100\%$	% of range		
Accuracy of power facto	or λ			
	$\pm [(\lambda - \lambda/1.0002) + \cos \emptyset - \cos \{\emptyset + \sin^{-1} (influence of power factor \lambda = 0\%/100)\}] \pm 1$ digit when voltage and current is at rated input of measurement range. Ø is the phase difference of voltage and curre	of power v of the nt.	vhen	
Accuracy of phase angle	eØ			
	\pm [I Ø – {cos-1 (λ /1.0002) + sin ⁻¹ {(influence of power factor of pr $\lambda = 0\%)/100$ }] deg ± 1 digit, when voltage and current is at the rate measurement range.	ower when d input of t	he	
One-year accuracy	Multiply the reading error of the six-month accuracy by a factor of 1	.5		
			-	

Functions

It

Measurement Functions and Conditions

Item	Specification
Crest factor	300 (relative to the minimum valid input)
	3 or 6 (when inputting the rated values of the measurement range)
Measurement period	Interval for determining the measurement function and performing calculations. • The measurement period is set by the zero crossing of the reference signal (synchronization source) excluding watt hour WP and ampere hour q during DC mode • Harmonic display The measurement period is from the basisping of the dots under interval to 1024
	or 8192 points at the harmonic sampling frequency.
Wiring	1P2W (single-phase, two-wire), 1P3W (single-phase, 3-wire), 3P3W (3-phase, 3-wire), 3P4W (3-phase, 4-wire), 3P3W (3V3A) (3-phase, 3-wire, 3-volt/3-amp measurement)
	However, the number of available wiring systems varies depending on the number of installed input elements.
Scaling	When inputting output from external current sensors, VT, or CT, set the current sensor conversion ratio, VT ratio, CT ratio, and power coefficient in the range from 0.0001 to 9999.999.
Averaging	 The average calculations below are performed on the normal measurement parameters of voltage U, current I, power P, apparent power S, and reactive power O. Power factor \ and phase angle are determined by calculating the average of P and S. Select exponential or moving averaging.
	Select an attenuation constant from 2 through 64. Moving average
	Harmonic measurement Only exponential averaging is available.
Data update rate	Select 50 ms, 100 ms, 200 ms, 500 ms, 1 s, 2 s, 5 s, 10 s, or 20 s.
Response time	At maximum, twice the data update rate (only during numerical display)
Hold	Holds the data display.
Single	Executes a single measurement during measurement hold.
Zero level compensation	n/Null
	Compensates the zero level. Null compensation range: ±10% of range

Voltage and current of each input compensation range: ±10% of ra Null can be set individually for each of the following input signals.
 Voltage and current of each input element
 Rotation speed and torque
 AUX1 and AUX2

- Frequency Measurement

How How	Creation		
Item	Specification		
Number of measurement	Select up to three frequer	ncies of the voltage or current input to the input elements	
	for measurement. If the fi	requency option is installed, the frequencies of the voltages	
	and currents being input	to all input elements can be measured.	
Measurement method	Reciprocal method		
Measurement range	Data update rate	Measuring range	
	50 ms	$45 \text{ Hz} \le f \le 1 \text{ MHz}$	
	100 ms	$25 \text{ Hz} \le f \le 1 \text{ MHz}$	
	200 ms	$12.5 \text{ Hz} \le f \le 500 \text{ kHz}$	
	500 ms	$5 \text{ Hz} \le f \le 200 \text{ kHz}$	
	1 s	$2.5 \text{ Hz} \le f \le 100 \text{ kHz}$	
	2 s	$1.25 \text{ Hz} \le f \le 50 \text{ kHz}$	
	5 s	$0.5 \text{ Hz} \le f \le 20 \text{ kHz}$	
	10 s	$0.25 \text{ Hz} \le f \le 10 \text{ kHz}$	
	20 s	$0.15 \text{ Hz} \le f \le 5 \text{ kHz}$	
Accuracy	±0.06% of reading ±0.1	mHz	
	When the input signal level is 30% or more of the measurement range		
	(60% or more for crest factor 6). However:		
	The input signal is 50% or more of the range.		
	 The frequency is smalle 	er or equal to 2 times of above lower frequency	
	 10 mA range setting of 	5 A input element	
	A range setting of 50	A input element	
	The 100 Hz frequency filt	er is ON at 0.15 Hz to 100 Hz, and the 1 kHz frequency filter	
	IS UN AT IUU HZ tO I KHZ.		
Display resolution	99999		
Min. frequency resolution	0.0001 Hz		
Frequency measurement f	ilter		
	Select OFF, 100 Hz or 1 k	Hz	
Integration			
Item	Specification		
Mode	Select a mode from Manu	ial, Standard, Continuous (repeat), Real Time Control	
	Standard, and Real Time	Control Continuous (Repeat).	

Specifications

Integration timer	Integration can be stopped automatically using the timer setting. 0000h00m00s to 10000h00m00s
Count over	If the integration time reaches the maximum integration time (10000 hours), or if the integration value reaches max/min display integration value ⁻¹ , the elapsed time and integration value is saved and the operation is stopped. *1: WP : ±999999 MWh q : ±999999 MAh WS : ±999999 MVAh WO : ±999999 Warh
Accuracy	±(Normal measurement accuracy + 0.02% of reading)
Timer accuracy	$\pm 0.02\%$ of reading

Harmonic Measurement (Option)

Item	Specification
Measured source	All installed elements
Method	PLL synchronization method (without external sampling clock function)
Frequency range	Fundamental frequency of the PLL source is in the range of 0.5 Hz to 2.6 kHz.
PLL source	 Select the voltage or current of each input element or the external clock. If the /G6 option is selected, two PLL sources can be selected, and dual harmonic measurement can be performed. If the /G5 option is selected, one PLL source is selectable. Input level To v more of range for voltage input. To more of range for voltage input. To more of range for external current sensor input. To w more of the measurement range rating for crest factor 3. 100% or more of the measurement range rating for crest factor 6. 20 ta to 1 kHz for the 1 A or 2 A range of the 50 A input element. The frequency filter ON condition is the same as with frequency measurement.
FFT data length	1024 when the data update rate is 50 ms, 100 ms, or 200 ms 8192 when the data update rate is 500 m, 1 s, 2 s, 5 s, 10 s, or 20 s
Window function	Rectangular
Anti-aliasing filter	Set using a line filter

Sample rate, window width, and upper limit of the measured order

1024 FFT points (data update rate 50 ms, 100 ms, 200 ms)

			opper minit of meas	
Fundamental frequency	Sampling rate	Window width	U, I, P, Ø, ØU, ØI or	other measured values
15 Hz to 600 Hz	f*1024	1	500th order	100th order
600 Hz to 1200 Hz	f*512	2	255th order	100th order
1200 Hz to 2600 Hz	f*256	4	100th order	100th order
However, the maximum measured order is 100 at a date update rate of 50 ms.				

8192 FFT points (data update rate 500 m, 1 s, 2 s, 5 s, 10 s, 20 s)

			Upper limit of meas	ured order
Fundamental frequency	Sampling rate	Window width	U, I, P, Ø, ØU, ØI or	other measured values
0.5 Hz to 1.5 Hz	f*8192	1	500th order	100th order
1.5 Hz to 5Hz	f*4096	2	500th order	100th order
5 Hz to 10 Hz	f*2048	4	500th order	100th order
10 Hz to 600 Hz	f*1024	8	500th order	100th order
600 Hz to 1200 Hz	f*512	16	255th order	100th order
1200 Hz to 2600 Hz	f*256	32	100th order	100th order

Add the following accurat	y to the normal measu	rement accuracy.	
When the line filter is OFF			
Frequency	Voltage	Current	Power
$0.5 \text{ Hz} \le f < 10 \text{ Hz}$	0.05% of reading	0.05% of reading	0.1% of reading
	+ 0.25% of range	+ 0.25% of range	+ 0.5% of range
$10 \text{ Hz} \le f < 45 \text{ Hz}$	0.05% of reading	0.05% of reading	0.1% of reading
	+ 0.25% of range	+ 0.25% of range	+ 0.5% of range
$45 \text{ Hz} \le \text{f} \le 66 \text{ Hz}$	0.05% of reading	0.05% of reading	0.1% of reading
	+ 0.25% of range	+ 0.25% of range	+ 0.5% of range
66 Hz < f \le 440 Hz	0.05% of reading	0.05% of reading	0.1% of reading
	+ 0.25% of range	+ 0.25% of range	+ 0.5% of range
440 Hz $<$ f \leq 1 kHz	0.05% of reading	0.05% of reading	0.1% of reading
	+ 0.25% of range	+ 0.25% of range	+ 0.5% of range
$1 \text{ kHz} < f \le 10 \text{ kHz}$	0.5% of reading	0.5% of reading	1% of reading
	+ 0.25% of range	+ 0.25% of range	+ 0.5% of range
$10 \text{ kHz} < f \le 100 \text{ kHz}$	0.5% of range	0.5% of range	1% of range
100 kHz < f < 260 kHz	1% of range	1% of range	2% of range

When the line filter is ON

Add the accuracy of the line filter to the accuracy of when the line filter is OFF

Specification

- All the items below apply to any of the tables.

 When hc crest factor is set to 3

 When h (power factor) = 1

 Power figures that exceed 2.6 kHz are reference values.

 For the voltage range, add the following values.

 Voltage accuracy: 25 mV

 Power accuracy: 25 mV/voltage range rating) × 100% of range

 For the vifteret current input range, add the following values.

 S A element

 Current accuracy: 50 μA

 Power accuracy: (50 μA/current range rating) × 100% of range

 50 A element

 Current accuracy: 4 mA

- For the external current range rating) × 100% of range
 For the external current accuracy: 4 mA/current range rating) × 100% of range
 For the external current sensor range, add the following values.
 Current accuracy: (2 mV/external current sensor range rating) × 100% of range
 For the external current sensor range rating) × 100% of range
 Add (n/S00)% of reading to the n-th component of the voltage and current, and add (n/250)% of reading to the n-th component of the voltage and current, and add (n/250)% of reading to the n-th component of the power.
 Accuracy when the crest factor is 6: Same as when the range is doubled for crest factor 3
 The quaranteed accuracy range by frequency and voltage/current is the same as the guaranteed range of normal measurement.
 The adjacent orders of the input order may be affected by the side rope.
 For n-th order component input when the PLL source frequency is 2 Hz or more, add ([n/(m+1))/50)% of (the n-th order reading) to the (n-m)th order and (n-m)th order of the power.
 For n-th order component input when the PLL source frequency is less than 2 Hz, add ([m/(m+1))/25)% of (the n-th order reading) to the (n+m)th order and (n-m)th order of the power.
 For n-th order component input when the PLL source frequency is less than 2 Hz, add ([m/(m+1))/20)% of (the n-th order reading) to the (n+m)th order and (n-m)th order of the power.

Motor Evaluation Function (Option)

ltem	Specification
Input terminal	Torque, speed (A, B, Z)
Input resistance	Approximately 1 M
Input connector type	Insulated BNC

Analog Input (Speed is input to the A terminal)

tem	Specification
lange	1 V, 2 V, 5 V, 10 V, 20 V
nput range	±110%
ine filter	0FF, 100, 1 kHz
Continuous maximum allowable input	±22 V
Aaximum common mode voltage	±42 Vpeak
Sampling rate	Approximately 200 kS/s
Resolution	16-bit
Accuracy	±(0.05% of reading + 0.05% of range)
emperature coefficient	±0.03% of range/°C

Pulse Input

Speed is input to the A terminal if the direction is not detected. If the direction is detected, the A and B phases of the rotary encoder are input to the A and B terminals. The Z phase is input to the Z terminal of the rotary

moduli foi ciccure angle measurement.	
tem	Specification
nput range	±12 Vpeak
requency measurement range	2 Hz to 1 MHz
Maximum common mode voltage	±42 Vpeak
Accuracy	±(0.05 + f/500)% of reading ±1 mHz
Rise of the Z terminal input and electric angle n	neasurement start time
	Within 500 ns
Detection level	H level: Approximately 2 V or more
	L level: Approximately 0.8 V or less
Pulse width	500 ns or more
larmonic measurement option (/G5 or /G6) is r	equired for electric angle measurement.

Auxiliary Input (Option)

em	Specification
nput terminal	AUX1/AUX2
nput type	Analog
nput resistance	Approximately 1 M
nput connector type	Insulated BNC
ange	50 m, 100 m, 200 m, 500 m, 1 V, 2 V, 5 V, 10 V, 20 V
nput range	±110%
ine filter	OFF/100 Hz/1 kHz
ontinuous maximum allow	/able input
	±22 V
ommon mode voltage	±42 V
ampling rate	Approximately 200 kS/s
esolution	16-bit
ccuracy	±(0.05% of reading + 0.05% of range)
	 Add 20 µV/°C to the change in temperature after zero level compensation
	or range change.
emperature coefficient	±0.03% of range/°C

DA Output and Remote Control (Option)

JA Output	
tem	Specification
)/A conversion resolution	16-bit
)utput voltage	±5 V FS (max. approximately ±7.5 V) relative to each rated value
lpdate rate	Same as the data update rate
)utput	20 channels (Output parameter can be set for each channel)
ccuracy	± (Accuracy of each measurement function +0.1% of FS) FS=5 V
Ainimum Ioad	100 k
emperature coefficient	±0.05% of FS/°C
Continuous maximum com	mon mode voltage
	±42 Vpeak or less

Remote Control

Item Signal EXT START, EXT STOP, EXT RESET, INTEG BUSY, EXT HOLD, EXT SINGLE, EXT PRINT Input leve 0 to 5 V

Calculation and Event Function

tom	opolitication
Jser-defined function	Compute the numerical data (up to 20 equations) with a combination of measurement function symbols and operators.
Efficiency calculation	Up to 4 efficiencies can be displayed by setting measurement parameters for the efficiency equations.
Jser-defined event	Event: Set conditions for measured values. The functions triggered by the event are Auto Print, Store, and DA Output.

High Speed Data Capturing Function (Option)

Item	Specification
Cycle of data capture	5ms (When External Sync OFF)
	1ms to 100ms (When External Sync ON, It synchronized with external signal from
	MEAS START terminal)
Data update rate	1sec (It displays the last numeric data during the 1 sec period)
Meas. parameter	Voltage, Current, Power for each element and Sigma*
	Torque and speed /Pm (/MTR), AUX1 and AUX2 /AUX
	* select voltage/current measurement mode from DC /RMS /MEAN /R-MEAN
Wiring	Single phase 2 wire (DC signal), Three phase 3 wire (3V3A), Three phase 4 wire
Line Filter	Always ON (Cut off frequency is 300kHz and lower)
Data output	Internal RAM (approx. 30MB), external USB storage
	PC through GP-IB, Ethernet of USB communication I/F
	(Every 1 sec data block continuously)

ata measured time	1 to 10000000, or infinite
ata capturing start	Turn on STAT key of HS Setting menu Satisfy trigger conditions after received 1/F command
rigger	Mode: AUTO/NORMAL/OFF, Source:U1 to U6/I1 to I6/EXT, Slope: Rising edge/Falling Edge/both edges, Level: +/- 100.0%
IS filter	OFF, ON (Cut off: 1Hz to 1000Hz, 1Hz unit setting)

Display

Numerical Display Item Display digit (display resolution)
 Display ugit (ulsplay resolution)
 Hess than 60000: 5 digits

 60000 or more: 4 digits
 60000 or more: 4 digits

 Number of display items
 Select 4, 8, 16, Matrix, ALL, Harmonic Single List, Harmonic Dual List, and Custom

Waveform Display

Specification	
Peak-to-peak con If the time axis is lacking data is fil	mpression data set so that there will be insufficient sampling data, the part led with the preceding sampling data
Approximately 2 MS/s	
Range from 0.05	ms to 2 s/div. However, 1/10 or less of the data update rate.
 Trigger type Trigger mode 	Edge type Select OFF, Auto, and Normal. Automatically turned OFF during integration.
Trigger source	Select voltage or current input to the input element or external clock
 Trigger slope 	Select Rise, Fall, or Rise/Fall
 Trigger Level 	Set the trigger level in the range of $\pm 100\%$ from the center of the screen (from top to bottom of the screen) if the trigger source is the voltage or current input to the input element. The set resolution is 0.1%.
• TTL level if the	trigger source is Ext Clk (external clock).
Not available	
ented faithfully at	up to approximately 100 kHz because the sampling rate is
	Spectrication Peak-to-peak co If the time axis is lacking data is fil Approximately 2 Range from 0.05 • Trigger type • Trigger mode • Trigger source • Trigger source

Data Store Function

Store	Store numerical data in media. (Media:	USB storage device	e, max. 1 GB)
Store interval	50 ms (when waveform display is OFF) to 99 hours 59 minutes 59 seconds		
Storage time when using 1	GB memory (Numerical Store and Wavef	form Display OFF)	
Number of	Number of	Storage interval	Storable time (Approx.)
measurement channels	measurement items (each channel)		
3 ch	5	50 ms	5 days
3 ch	20	50 ms	56 hours
3 ch	Each harmo nic component data of DC to the 100th order of voltage, current, and power	50 ms	4 hours
6 ch	5	1 sec	86 days
6 ch	20	1 sec	24 days
6 ch	Each harmonic component data of DC to the 100th order of voltage, current, and power	1 sec	40 hours
6 ch	Each harmonic component data of DC to the 100th order of voltage, current, and power	100 ms	49 minutes
*One piece of data is 4 byte	es, and the limit to the number of store op	erations is 999999	99 counts.

File Function

ltem	Specification
Save	Save setting information, waveform display data, numerical data, and screen image data to media
Read	Read the saved setting information from media.

Auxiliary I/O

I/O Section for Master/Slave Synchronization Signals		
Item	Specification	
Connector type	BNC connector: Applicable to both master and salve	
I/O level	TTL: Applicable to both master and slave	
Measurement start delay time		
	Within 15 sample intervals: Applicable to master	
	Within 1 µs + 15 sample intervals: Applicable to slave	

al de

xternal Clock Inp	JUT
ommon	
em	Specification
onnector type	BNC connector
put level	TTL
lhen a synchronizatio	n source for normal measurement is used as the external clock for input
em	Specification
requency range	Same as the measurement range of frequency measurement.
put waveform	Square waveform with a duty ratio of 50%
/hen a PLL source for em	harmonic measurement is used as the external clock for input Specification
requency range	Harmonic measurement (/G5 or /G6) option: 0.5 Hz to 2.6 kHz
put waveform	Square waveform with a duty ratio of 50%
rigger	
em	Specification
inimum pulse width	1 µs
rigger delay time	Within (1 µs + 15 sample intervals)

Specifications

RGB Output (Option)

Item	Specification
Connector type	D-sub 15-pin (receptacle)
Output format	Analog RGB output

Computer Interface

GP-IB Interface	
Item	Specification
Compatible devices	National Instruments
	PCI-GPIB or PCI-GPIB+
	 PCIe-GPIB or PCIe-GPIB+
	 PCMCIA-GPIB and PCMCIA-GPIB+
	GPIB-USB-HS
	Use an NI-488.2M Version 1.60 or later driver
Electrical and mechanical specifications	
	Conforms to the IEE Standard 488-1978 (JIS C 1901-1987)
Functional specifications	SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT1, C0
Protocol	Conforms to the IEEE Standard 488.2-1992
Encoding	SO (ASCII)
Mode	Addressable mode
Address	0 to 30
Clearing remote mode	Remote mode can be cleared by pressing the LOCAL key

Ethernet Interface

em	Specification
umber of communication ports	
	1
onnector type	RJ-45 connector
ectrical and mechanical s	specifications
	Conforms to the IEEE802.3
ansmission method	Ethernet 1000BASE-T, 100BASE-TX, 10BASE-T
ommunication protocol	TCP/IP
plicable services	FTP server, DHCP, DNS, remote control (VXI-11), SNTP, FTP client

USB PC Interface

em	Specification
umber of ports	1
onnector	Type B connector (receptacle)
ectrical and mechanical s	pecifications
	Conforms to the USB Rev. 2.0
oplicable transfer standar	ds
	HS (High Speed) mode (480 Mbps), FS (Full Speed) mode (12 Mbps)
plicable protocols	USBTMC-USB488 (USB Test and Measurement Class Ver.1.0)
plicable system environn	nent
	The PC must run the Japanese or English version of Windows 7 (32-bit), Vista (32-bit), or XP (SP2 or later 32-bit), and be equipped with a USB port

USB for Peripheral Devices

m	Specification		
umber of ports	2		
onnector type	nector type USB type A connector (receptacle)		
ectrical and mechanical s	specifications		
	Conforms to USB Revision 2.0		
plicable transfer standards			
	HS (High Speed) mode (480 Mbps), FS (Full Speed) mode (12 Mbps), LS (Low Speed) mode (1.5 Mbps)		
pplicable devices	Mass storage device conforming to USB Mass Storage Class Version 1.1 109 and 104 keyboards conforming to USB HID Class Version 1.1 Mouse conforming to USB HID Class Version 1.1		
wer supply	5 V, 500 mA (for each port). However, devices that exceed the maximum current		

Built-in Printer (Option)

em	Specification
inting method	Thermal line dot method
ot density	8 dots/mm
aper width	80 mm
fective recording width	72 mm
uto Print	Allows you to set the interval time for printing to automatically print the measured values. The start/stop time can also be set.

General Specifications

Item	Specification		
Warm-up time	Approximately 30 minutes		
Operation environment	Temperature: 5 to 40°C Humidity: 20 to 80%RH (no condensation)		
Operating altitude	2000 m or less		
Installation location	Indoors		
Storage environment	Temperature: -25 to 60°C Humidity: 20 to 80%RH (no condensation)		
Rated power supply voltage	le		
	100 to 240 VAC		
Allowable power supply vo	Itage fluctuation range		
	90 to 264 VAC		
Rated power supply freque	ency		
	50/60 Hz		
Allowable power supply fre	equency fluctuation range		
	48 to 63 Hz		
Maximum power consump	tion		
	150 VA (when using a built-in printer)		
Dimensions (see s ection 1	2.13)		
	Approximately 426 mm (W) \times 177 mm (H) \times 459 mm (D) (Excluding the handle and other projections when the printer is stored in the cover)		
Weight	Approximately 15 kg (including the main body, 6 input elements, and options)		
Battery backup	Setting information and built-in clock continue to operate with a lithium backup battery.		

Typical Voltage/Current Connections

Measurement using current sensor

* A burden resistor is required for the CT1000, CT200, CT60, and 751574.

Model and Suffix Codes

Model	Suffix codes			[Descripti	on	
		WT18	00 Single	input el	lement		
WT1901	-01	50 A	1				
WITOUT	-10	5 A					
		WT1	800 2 in	put elem	nents		
	-02	50 A	50 A				
WT1802	-11	5 A	50 A				
	-20	5 A	5 A				
		WT1	800 3 in	put elem	nents		
	-03	50 A	50 A	50 A			
WT1803	-12	5 A	50 A	50 A			
111000	-21	5 A	5 A	50 A			
	-30	5 A	5 A	5 A			
		WT1	800 4 in	put elem	ients		
	-04	50 A	50 A	50 A	50 A		
	-13	5 A	50 A	50 A	50 A		
W11804	-22	5 A	5 A	50 A	50 A		
	-31	5 A	5 A	5 A	50 A		
	-40	5 A	5 A	5 A	5 A		
	05	WII	800 5 10	put elem	ients	50.4	1
	-05	50 A	50 A	50 A	50 A	50 A	
	-14	5 A	50 A	50 A	50 A	50 A	
WT1805	-23	5 A	5A	50 A	50 A	50 A	
	-32	D A	D A	DA FA	5U A	A UC	
	-41	5A EA	5A EA	DA EA	5 A	A UC	
	-50	J J A	900 C in	U D A	J A A	JA	
	06	50.4	50 0			50 4	50 4
	15	50A	50 A	50 A	50 A	50 A	50 A
	-13	5 A	5 A	50 A	50 A	50 A	50 A
WT1806	-24	5 1	5 1	5.0	50 A	50 A	50 A
WITTOOD	-42	5 4	5 Δ	54	50	50 A	50 A
	-51	5 4	50	54	54	50	50 A
	-60	5.4	5.4	5.4	5.4	5.4	54
		011	Standar	d option	1071	1011	- UN
	-D	UL/CS	A standa	rd			
	-F	VDE st	andard	-			
Power cord	-R	AS standard					
	-Q	BS sta	ndard				
	-H	GB sta	GB standard				
	-HE	Englis	English menu				
Languages	-HG	German menu					
	-HC	Chines	se menu				
			Addition	al option			
	/EX1	Extern	<u>al curren</u>	<u>t sensor</u>	input fo	r WT1801	
	/EX2	Extern	al curren	t sensor	input fo	r WT1802	2
	/EX3	External current sensor input for WT1803					3
	/EX4	External current sensor input for WT1804					
	/EX5	External current sensor input for WT1805					
	/EX6	External current sensor input for W11806					
	/B5	Built-in printer					
Uptions	/65	Simitanagua Dual Harmania Maggurament Select one					
	/66	Simita	neous Di	iai Harm	ionic ivie	asureme	nt
	/UI	Deita	Jomputat				
		A00-0	II Frequel	icy wea	suremer	IL	
		KGR 0	ulput	Outrout-			
	/DA	ZU-Cha	Evoluotia	outputs	ion		
		Audition Function Select one					
		Hinhe	need dat	a cantur	ina		

* The numbers in the "Description" column have the following meanings.
 50 A: 50 A input element, 5 A: 5 A input element
 Elements are inserted in the order shown starting on the left side on the back.
 * GPIB, Ethernet and USB communication come standard.

Note: Adding input elements after initial product delivery will require rework at the factory. Please choose your models and configurations carefully, and inquire with your sales representative if you have any questions

Standard accessories Power cord, Rubber feet, current input protective cover, User's manual, expanded user's manual, communication interface user's manual, printer roll paper (provided only with /B5), connector (provided only with /DA) Safety terminal adapter 758931 (provided two adapters in a set times

User's manuals [Start guide (booklet), function /operation, communication manuals (electric file)]

YOKOGAWA METERS & INSTRUMENTS CORPORATION

Global Sales Dept. /Phone: +81-42-534-1413 Facsimile: +81-42-534-1426 E-mail: tm@cs.jp.yokogawa.com

YOKOGAWA CORPORATION OF AMERICA YOKOGAWA EUROPE B.V.

Phone: (1)-770-253-7000, Fax: (1)-770-254-0928 Phone: (31)-88-4641000, Fax: (31)-88-4641111 YOKOGAWA ENGINEERING ASIA PTE. LTD. Phone: (65)-62419933, Fax: (65)-62412606

Accessory (sold separately)

Model/parts numbe	Product	Description	Order Q'ty
758917	Test read set	A set of 0.8 m long, red and black test leads	1
758922 🛕	Small alligator-clip	Rated at 300 V and used in a pair	1
758929 🔺	Large alligator-clip	Rated at 1000 V and used in a pair	1
758923	Safety terminal adapter	(spring-hold type) Two adapters to a set	1
758931	Safety terminal adapter	(screw-fastened type) Two adapters to a set 1.5 mm hex Wrench is attached	1
758921 🔺	Fork terminal adapter	Banana-fork adapter, Two adapters to a set	1
701959	Safety mini-clip	Hook type, Two in a set	1
758924 🔺	Conversion adapter	BNC-banana-jack (female) adapter	1
366924 🔺	BNC-BNC cable	1 m	1
366925 🔺	BNC-BNC cable	2 m	1
B9284LK 🔺	External sensor cable	Current sensor input connector, Length 0.5 m	1
B9316FX 🔺	Printer roll pager	Thermal paper, 10 meters (1 roll)	10

▲ Due to the nature of this product, it is possible to touch its metal parts. Therefore, there is a risk of electric shock, so the product must be used with caudion. * Use these products with low-voltage circuits (42 V or less).

Rack Mount

Model	Product	Description
751535-E4	Rack mounting kit	For EIA
751535-J4	Rack mounting kit	For JIS

CT1000 AC/DC Current sensor
Current: 1000 Apk
Basic Accuracy:
±(0.05% of rdg + 30 μA)
Measurement Range:
DC to 300 kHz
Input/output ratio: 1500: 1

CT200 AC/DC Current sensor

Current: 200 Apk Current: 200 Apk Basic Accuracy: \pm (0.05% of rdg + 30 µA) Measurement Range: DC to 500 kHz

Input/output ratio: 1000: 1

Exterior WT1800

unit: mm

751574 Current transducer

CT60 AC/DC Current sensor

Current: 60 Apk Basic Accuracy: \pm (0.05% of rdg + 30 µA) Measurement Range: DC to 800 kHz

Input/output ratio: 600: 1

Current: 600 Apk Basic Accuracy: $\pm (0.05\% \text{ of } rdg + 40 \,\mu\text{A})$ Measurement Range: DC to 100 kHz Input/output ratio: 1500: 1

Current: 60 Apk

Yokogawa's Approach to Preserving the Global Environment -

- Yokogawa's electrical products are developed and produced in facilities that have received ISO14001 approval.
- In order to protect the global environment, Yokogawa's electrical products are designed in accordance with Yokogawa's Environmentally Friendly Product Design Guidelines and Product Design Assessment Criteria.

NOTICE

- Before operating the product, read the user's manual thoroughly for proper and safe operation.
- If this product is for use with a system requiring safeguards that directly involve personnel safety, please contact the Yokogawa sales offices.

Subject to change without notice. [Ed:02/b] Copyright ©2011 Printed in Japan, 108(KP)

nbn Elektronik AG Birmensdorferstrasse 30 CH-8142 Uitikon Tel. +41 (0)44 404 34 34 Fax +41 (0)44 493 50 32 info@nbn-elektronik.ch www.nbn-elektronik.ch